Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho tam giác ABC có diện tích bằng S = 3 2 , hai đỉnh A (2; −3) và B (3; −2). Trọng tâm G nằm trên đường thẳng 3x – y – 8 = 0. Tìm tọa độ đỉnh C?

Câu 2 :

Cho hai điểm P (1; 6) và Q (−3; −4) và đường thẳng Δ: 2x – y – 1 = 0. Tọa độ điểm N thuộc Δ sao cho |NP − NQ| lớn nhất

Câu 3 :

Cho tam giác ABC nội tiếp đường tròn tâm I (2; 1), trọng tâm G 7 3 ; 4 3 , phương trình đường thẳng AB: x – y + 1 = 0. Giả sử điểm C (x 0 ; y 0 ), tính 2x 0 + y 0

Câu 4 :

Trong mặt phẳng tọa độ Oxy, cho điểm M (4; 1), đường thẳng d qua M, d cắt tia Ox, Oy lần lượt tại A (a; 0), B (0; b) sao cho tam giác ABO (O là gốc tọa độ) có diện tích nhỏ nhất. Giá trị a − 4b bằng

Câu 5 :

Trong mặt phẳng tọa độ Oxy, tam giác ABC có đỉnh A (−1; 2), trực tâm H (−3; −12), trung điểm của cạnh BC là M (4; 3). Gọi I, R lần lượt là tâm, bán kính đường tròn ngoại tiếp tam giác ABC. Chọn khẳng định đúng trong các khẳng định sau

Câu 6 :

Trong mặt phẳng với hệ trục Oxy, cho hình vuông ABCD có tâm là điểm I. Gọi G (1; −2) và K (3; 1) lần lượt là trọng tâm các tam giác ACD và ABI. Biết A (a; b) với b > 0. Khi đó a 2 + b 2 bằng

Câu 7 :

Trong mặt phẳng tọa độ Oxy, cho ba điểm A (1; 0), B (0; 5) và C (−3; −5). Tìm tọa độ điểm M thuộc trục Oy sao cho 3 M A - 2 M B + 4 M C đạt giá trị nhỏ nhất?

Câu 8 :

Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x − 2y – 5 = 0 và các điểm A (1; 2), B (−2; 3), C (−2; 1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: M A + M B + M C nhỏ nhất

Câu 9 :

Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết AD = 2AB, đường thẳng AC có phương trình x + 2y + 2 = 0, D (1; 1) và A (a; b) (a, b ∈ R, a > 0). Tính a + b

Câu 10 :

Trong mặt phẳng Oxy, cho tam giác ABC có A (−4; −1), hai đường cao BH và CK có phương trình lần lượt là 2x – y + 3 = 0 và 3x + 2y – 6 = 0. Viết phương trình đường thẳng BC và tính diện tích tam giác ABC

Câu 11 :

Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA 2 + MB 2 nhỏ nhất.

Câu 12 :

Cho tam giác ABC có A 4 5 ; 7 5 và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.

Câu 13 :

Cho đường tròn (C): x 2 + y 2 − 2x + 2y – 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2

Câu 14 :

Đường thẳng nào dưới đây tiếp xúc với đường tròn (x − 2) 2 + y 2 = 4, tại M có hoành độ x M = 3?

Câu 15 :

Đường tròn đi qua A (2; 4), tiếp xúc với các trục tọa độ có phương trình là