Tổng hợp đề thi thử THPT quốc gia môn Toán cực hay có lời giải - Đề 7

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho hàm số y = x 4 + 4 x 2 + 3 . Mệnh đề nào dưới đây đúng?

Câu 2 :

Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?

Câu 3 :

L i m 1 - 2 n 3 n + 1 bằng

Câu 4 :

Cho hàm số y = f(x) có bảng biến thiên

Hỏi hàm số có bao nhiêu điểm cực trị ?

Câu 5 :

Cho hàm số y = a x 3 + b x 2 + c x + d có đồ thị như hình bên. Hỏi phương trình a x 3 + b x 2 + c x + d = 0 có bao nhiêu nghiệm?

Câu 6 :

Thể tích của khối lập phương ABCD,A’B’C’D’ có đường chéo AC’ = 6 bằng

Câu 7 :

Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh a. Thể tích khối trụ đó bằng

Câu 8 :

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1) và B ( - 4;1;9). Tọa độ của véc tơ A B

Câu 9 :

Với các số thực a,b >0 bất kỳ, rút gọn biểu thức P = 2 log 2 a = log 1 2 b 2 ta được

Câu 10 :

Tổng tất cả các nghiệm của phương trình 2 2 x + 1 - 5 . 2 x + 2 = 0 bằng

Câu 11 :

Mệnh đề nào dưới đây sai?

Câu 12 :

Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y =x và y = e x , trục tung và đường thẳng x=1 được tính theo công thức

Câu 13 :

Cho số phức 2 – 3i. Môđun của số phức w = (1+i)z bằng

Câu 14 :

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d đi qua điểm M(3;3; –2) và có véc tơ chỉ phương u = 1 ; 3 ; 1 .Phương trình của d là

Câu 15 :

Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P): 2x – y + z 3 = 0. Mệnh đề nào dưới đây là đúng?

Câu 16 :

Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ. Chọn ngẫu nhiêu 5 bạn tham gia biểu diễn, xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số nam nhiều hơn số nữ bằng

Câu 17 :

Hàm số y = 2 x - x 2 nghịch biến trên khoảng

Câu 18 :

Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = 2 - x 2 - x bằng

Câu 19 :

Số đường tiệm cận đứng của đồ thị hàm số y = 4 x 2 - 1 + 3 x 2 + 2 x 2 - x

Câu 20 :

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A’BC) bằng

Câu 21 :

Trong không gian với hệ trục tọa độ Oxyz, cho M(3;4;5) và mặt phẳng (P): x – y + 2z – 3 = 0. Hình chiếu vuông góc của M lên mặt phẳng (P) là

Câu 22 :

Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?

Câu 23 :

Tích phân I = 0 1 e 2 x d x bằng

Câu 24 :

Biết phương trình z 2 + a z + b = 0 a , b i có một nghiệm là z = - 2 + i.Tính a+b

Câu 25 :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=a 3 . Góc tạo với mặt phẳng (SAB) và (SCD) bằng

Câu 26 :

Cho tập A có n phần tử. Biết rằng số tập con có 7 phần tử của A bằng hai lần số tập con có 3 phần tử của A.Hỏi n thuộc đoạn nào dưới đây?

Câu 27 :

Cho hàm số f(x) có đạo hàm f'(x) = x + 1 2 x - 1 3 2 - x . Hàm số f(x) đồng biến trên khoảng nào dưới đây?

Câu 28 :

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình cos2x + m|sinx| - m = 0 có nghiệm?

Câu 29 :

Biết rằng phương trình log 3 2 x - m log 3 x + 1 = 0 có nghiệm duy nhất nhỏ hơn 1. Hỏi m thuộc đoạn nào dưới đây?

Câu 30 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, BC = 2a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = 2a. Khoảng cách giữa hai đường thẳng BD và SC bằng

Câu 31 :

Cho khối cầu tâm O, bán kính 6cm. Mặt phẳng (P) cách O một khoảng h cắt khối cầu theo một hình tròn (C). Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C). Biết khối nón có thể tích lớn nhất, giá trị của h bằng

Câu 32 :

Cho 1 2 f x 2 + 1 d x = 2 . Khi đó I = 2 5 f x d x bằng

Câu 33 :

Một chiếc máy bay chuyển động trên đường băng với vận tốc v(t) = t 2 + 10(m/s) với t là thời gian được tính bằng đơn vị giây kể từ khi máy bay bắt đầu chuyển động. Biết khi máy bay đạt vận tốc 200(m/s) thì nó rời đường băng. Quãng đường máy bay đã di chuyển trên đường băng là

Câu 34 :

Số nghiệm nguyên của bất phương trình log 2 x + log 3 x ≥ 1 + log 2 x.log 3 x là

Câu 35 :

Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng d 1 : x - 1 1 = y - 2 3 = z 1 ; d 2 : x + 1 - 1 = y - 1 2 = z - 2 4 . Đường thẳng d qua M cắt d 1 ; d 2 lần lượt tại A và B. Độ dài đoạn thẳng AB bằng

Câu 36 :

Cho đa giác đều 100 đỉnh. Chọn ngẫu nhiên 3 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác tù là

Câu 37 :

Cho hàm số y = 2 x - 1 x - 1 có đồ thị (C) và điểm I(1;2). Điểm M(a;b), a>0 thuộc (C) sao cho tiếp tuyến tại M của (C) vuông góc với đường thẳng IM. Giá trị a+b bằng

Câu 38 :

Có bao nhiêu giá trị nguyên của m để hàm số y = 3x + m(sinx+cosx+m) đồng biến trên R?

Câu 39 :

Số điểm cực trị của hàm số y = x - 1 x 2 3

Câu 40 :

Biết đường thẳng y = (3m – 1)x + 6m + 3 cắt đồ thị hàm số y = x 3 – 3x 2 + 1 tại ba điểm phân biệt sao cho có một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?

Câu 41 :

Cho x, y là các số thực dương thỏa mãn lnx + lny ≥ ln(x 2 +y) là các số thực dương thỏa mãn P = x + y

Câu 42 :

Tìm tập hợp tất cả các tham số m sao cho phương trình 4 x 2 - 2 x + 1 - m 2 x 2 - 2 x + 2 + 3 m - 2 = 0 có bốn nghiệm phân biệt

Câu 43 :

Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Thể tích khối chóp S.ABC bằng

Câu 44 :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 2 = y - 1 = z 4 và mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 2 . Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S).Gọi M và N là tiếp điểm. Độ dài đoạn MN bằng

Câu 45 :

Trong không gian với hệ tọa độ Oxyz cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A, B, C. Thể tích khối chóp O.ABC bằng

Câu 46 :

Hàm số f ( x ) 7 cos x - 4 sin x cos x + sin x có một nguyên hàm F(x) thỏa mãn F π 4 = 3 π 8 . Giá trị của F π 2 bằng

Câu 47 :

Xét hàm số f(x) liên tục trên đoạn [0;1] và thỏa mãn 2f(x) + 3f(1 - x) = 1 - x . Tích phân 0 1 f ( x ) d x bằng

Câu 48 :

Với hai số phức z 1 và z 2 thỏa mãn z 1 + z 2 = 8 +6i và |z 1 – z 2 | = 2, tìm giá trị lớn nhất P = |z 1 |+|z 2 |

Câu 49 :

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD = 60 0 , SA=SB=SD= a 3 2 . Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng

Câu 50 :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng