Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho hàm số f(x) liên tục trên đoạn \[\left[ {a;b} \right].\]Chọn mệnh đề sai?

Câu 2 :

Giả sử hàm số y=f(x) liên tục trên \[\left[ {a;b} \right]\;\]và k là một số thực trên R. Cho các công thức:

a) \[\mathop \smallint \limits_a^a f\left( x \right)dx = 0\]

b) \[\mathop \smallint \limits_a^b f\left( x \right)dx = \mathop \smallint \limits_b^a f\left( x \right)dx\]

c) \[\mathop \smallint \limits_a^b kf\left( x \right)dx = k\mathop \smallint \limits_a^b f\left( x \right)dx\]

Số công thức sai là:

Câu 3 :

Cho hàm số f(x) có đạo hàm trên \[\left[ {1;4} \right]\;\]và \[f\left( 1 \right) = 2,f\left( 4 \right) = 10\]. Giá trị của \[I = \int\limits_1^4 {f\prime (x)dx} \] là

Câu 4 :

Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {0;1} \right],\;\]có \[\mathop \smallint \limits_0^1 \left[ {3 - 2f\left( x \right)} \right]{\rm{d}}x = 5.\]. Tính \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x\].

Câu 5 :

Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?

Câu 6 :

Cho hàm số \[F\left( x \right) = \mathop \smallint \limits_1^x \left( {t + 1} \right)dt\]. Giá trị nhỏ nhất của F(x) trên đoạn \[\left[ { - 1;1} \right]\;\]là:

Câu 7 :

Cho hai hàm số \[f\left( x \right) = {x^2}\] và \[g(x) = {x^3}\]. Chọn mệnh đề đúng:

Câu 8 :

Giả sử f(x) là hàm liên tục trên R và các số thực a<b

Câu 9 :

Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:

Câu 10 :

Cho \[\mathop \smallint \limits_2^5 f\left( x \right)dx = 10\], khi dó \[\mathop \smallint \limits_5^2 \left[ {2 - 4f\left( x \right)} \right]dx\] có giá trị là:

Câu 11 :

Cho hàm số f(x) liên tục trên R thỏa mãn \[\mathop \smallint \limits_a^d f\left( x \right)dx = 10,\mathop \smallint \limits_b^d f\left( x \right)dx = 18,\mathop \smallint \limits_a^c f\left( x \right)dx = 7\]. Giá trị của \[\mathop \smallint \limits_b^c f\left( x \right)dx\] là:

Câu 12 :

Cho biết \[\mathop \smallint \limits_1^3 f\left( x \right)dx = - 2,\mathop \smallint \limits_1^4 f\left( x \right)dx = 3,\mathop \smallint \limits_1^4 g\left( x \right)dx = 7\]. Chọn khẳng định sai?

Câu 13 :

Giả sử A,B là các hằng số của hàm số \[f(x) = Asin\pi x + B{x^2}\] Biết \[\mathop \smallint \limits_0^2 f\left( x \right)dx = 4\]giá trị của B là:

Câu 14 :

Cho số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} dx = {e^2} - 1\), khi đó a có giá trị bằng

Câu 15 :

Trong các tích phân sau, tích phân nào có giá trị khác 22?

Câu 16 :

Tích phân \[I = \mathop \smallint \limits_1^2 {x^5}dx\] có giá trị là:

Câu 17 :

Cho hàm số bậc ba \[f\left( x \right) = {x^3} + a{x^2} + bx + c\,\,\,\left( {a,\,\,b,\,\,c \in \mathbb{R}} \right)\] thỏa mãn: \[f\left( 1 \right) = 10,f\left( 2 \right) = 20.\]. Khi đó \(\int\limits_0^3 {f'\left( x \right)dx} \) bằng:

Câu 18 :

Giá trị của b để \(\int\limits_1^b {\left( {2x - 6} \right)} dx = 0\) là:

Câu 19 :

Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:

Câu 20 :

Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

Câu 21 :

Cho hàm số f(x) liên tục trên \[\left( {0; + \infty } \right)\;\]và thỏa mãn \[2f(x) + xf\left( {\frac{1}{x}} \right) = x\;\] với mọi x>0. Tính \[\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx\].

Câu 22 :

Tích phân \[I = \mathop \smallint \limits_2^5 \frac{{dx}}{x}\] có giá trị bằng

Câu 23 :

Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \[[0;\pi ]\]đạt giá trị bằng 0 ?

Câu 24 :

Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng

Câu 25 :

Nếu \[\mathop \smallint \limits_{ - 2}^0 \left( {4 - {e^{ - \frac{x}{2}}}} \right)dx = K - 2e\]thì giá trị của K là

Câu 26 :

Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng

Câu 27 :

Tích phân \[\mathop \smallint \limits_0^3 x(x - 1)dx\] có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây ?

Câu 28 :

Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J

Câu 29 :

Tích phân \[I = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{4{{\sin }^3}x}}{{1 + \cos x}}dx\] có giá trị bằng

Câu 30 :

Tích phân \[I = \mathop \smallint \limits_0^{2\pi } \sqrt {1 + \sin x} dx\] có giá trị bằng

Câu 31 :

Tích phân \[\mathop \smallint \limits_{ - 1}^5 \left| {{x^2} - 2x - 3} \right|dx\] có giá trị bằng:

Câu 32 :

Tích phân \[\mathop \smallint \limits_2^3 \frac{{{x^2} - x + 4}}{{x + 1}}dx\]bằng

Câu 33 :

Giá trị của tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {{{\sin }^4}x + {{\cos }^4}x} \right)\left( {{{\sin }^6}x + {{\cos }^6}x} \right)dx\] là:

Câu 34 :

Giá trị của a để đẳng thức \[\mathop \smallint \limits_1^2 \left[ {{a^2} + (4 - 4a)x + 4{x^3}} \right]dx = \mathop \smallint \limits_2^4 2xdx\] là đẳng thức đúng

Câu 35 :

Biết rằng \[\mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = a + \ln b\] với a,b là các số hữu tỉ. Giá trị của 2a+3b bằng

Câu 36 :

Cho hàm số f(x) có f(0)=0 và \[f\prime (x) = si{n^4}x\forall x \in \mathbb{R}\]. Tích phân \[\mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( x \right)dx\] bằng:

Câu 37 :

Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \[a\left( t \right) = 6 - 3t\,\,\left( {m/{s^2}} \right)\] trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:

Câu 38 :

Giá trị của tích phân \[\mathop \smallint \limits_0^{2017\pi } \sqrt {1 - \cos 2x} dx\] là

Câu 39 :

Tìm hai số thực A,B sao cho \[f(x) = Asin\pi x + B\], biết rằng \[f\prime \left( 1 \right) = 2\;\] và \[\mathop \smallint \limits_0^2 f(x)dx = 4\].

Câu 40 :

Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn \[\left[ {0;1} \right].\;\]Đặt \[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\]. Biết \[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\] với mọi \[x \in \left[ {0;1} \right].\] Tích phân \[\mathop \smallint \limits_0^1 \sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}\,dx\]có giá trị lớn nhất bằng