Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho d , d ′ là các đường thẳng có VTCP lần lượt là u , u ' , M d , M ' d ' . Khi đó d d ' nếu:

Câu 2 :

Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : x = 1 + 3 t y = t z = 1 2 t d 2 : x 1 3 = y 2 1 = z 3 2 .

Vị trí tương đối của d 1 d 2 là:

Câu 3 :

Điều kiện cần và đủ để hai đường thẳng cắt nhau là:

Câu 4 :

Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : x 3 1 = y 2 2 = z 1 1 d 2 : x = t y = 2 z = 2 + t .

Vị trí tương đối của d 1 d 2 là:

Câu 5 :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x = 1 + 2 t y = t z = 2 t . Trong các đường thẳng sau, đường thẳng nào vuông góc với d ?

Câu 6 :

Công thức tính khoảng cách từ điểm A đến đường thẳng d ′ đi qua điểm M ′ và có VTCP u ' là:

Câu 7 :

Góc giữa hai đường thẳng có các VTCP lần lượt là u , u ' thỏa mãn:

Câu 8 :

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d có phương trình x 1 3 = y + 2 2 = z 3 4 d ' : x + 1 4 = y 1 = z + 1 2 . Điểm nào sau đây không thuộc đường thẳng d nhưng thuộc đường thẳng d ′?

Câu 9 :
Giao điểm của hai đường thẳng d : x = 3 + 2 t y = 2 + 3 t z = 6 + 4 t d ' : x = 5 + t ' y = 1 4 t ' z = 20 + t ' có tọa độ là
Câu 10 :

Trong không gian với hệ tọa độ Oxyz , cho các điểm A (0;0;2), B (1;0;0), C (2;2;0) và D (0; m ;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB CD bằng 2 là:

Câu 11 :

Trong không gian với hệ toạ độ Oxyz , cho đường thẳng d : x 3 2 = y + 1 1 = z 1 2 và điểm M (1;2;−3). Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d

Câu 12 :

Trong không gian với hệ tọa độ Oxyz , cho 2 đường thẳng d : x 2 3 = y + 2 1 = z + 1 2 d ' : x 6 = y 4 2 = z 2 4 . Mệnh đề nào sau đây là đúng?

Câu 13 :

Trong không gian Oxyz cho điểm A (1;1;−2) và đường thẳng d : x 1 2 = y + 1 1 = z 2 . Đường thẳng qua A và song song với d có phương trình tham số là

Câu 14 :

Trong không gian Oxyz , cho đường thẳng d : x = 1 + t y = 2 t z = 1 3 t . Đường thẳng Δ đi qua gốc tọa độ O , vuông góc với trục hoành Ox và vuông góc với đường thẳng d có phương trình là:

Câu 15 :

Cho hai điểm A (1;−2;0), B (0;1;1), độ dài đường cao OH của tam giác OAB là:

Câu 16 :

Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : x = 1 + t y = 0 z = 5 + t d 2 : x = 0 y = 4 2 t ' z = 5 + 3 t ' Phương trình đường vuông góc chung của d 1 d 2 là:

Câu 17 :

Cho hình lập phương A(0;0;0),B(1;0;0),D(0;1;0),A′(0;0;1) . Gọi M,N lần lượt là trung điểm của AB,CD . Khoảng cách giữa MN A′C là:

Câu 18 :

Trong không gian Oxyz, đường thẳng d : x + 2 1 = y 3 2 = z 11 1 và hai điểm A(1;2;4) , B(0;0;m) cùng nằm trong một mặt phẳng khi m bằng:

Câu 19 :

Trong không gian Oxyz cho hai điểm M(−2;−2;1),A(1;2;−3) và đường thẳng d : x + 1 2 = y 5 2 = z 1 . Gọi Δ là đường thẳng qua M, vuông góc với đường thẳng d,d, đồng thời cách điểm A một khoảng bé nhất. Khoảng cách bé nhất đó là

Câu 20 :

Trong không gian Oxyz , cho đường thẳng d : x 3 2 = y 4 1 = z 2 1 và 2 điểm A(6;3;−2) ; B(1;0;−1) . Gọi Δ là đường thẳng đi qua B , vuông góc với d và thỏa mãn khoảng cách từ A đến Δ là nhỏ nhất. Một vectơ chỉ phương của Δ có tọa độ :