Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

Câu 2 :

Tính góc tạo bởi giữa hai đường thẳng \[{d_1}:6x - 5y + 15 = 0\] và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 10 - 6t}\\{y = 1 + 5t}\end{array}} \right.\).

Câu 3 :

Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d 1 và d 2 hợp với nhau một góc bằng 45 0 .

Câu 4 :

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x 0 ;y 0 ) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:

Câu 5 :

Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:

Câu 6 :

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

Câu 7 :

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.

Câu 8 :

Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].

Câu 9 :

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\] . Viết PTĐT (d) đi qua điểm M(1;2) và tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Câu 10 :

Lập phương trình đường thẳng (Δ) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.

Câu 11 :

Cho đường thẳng d có ptts: \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = 3 + t}\end{array}} \right.;t \in R\). Tìm điểm \[M \in d\;\] sao cho khoảng cách từ M đến điểm A(0;1) một khoảng bằng 5.

Câu 12 :

Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\]. Lập phương trình hai đường phân giác của các góc tạo bởi d và d′

Câu 13 :

Lập phương trình đường phân giác trong của góc A của ΔABC biết A(2;0);B(4;1);C(1;2)

Câu 14 :

Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD biết M(2;1);N(4;−2);P(2;0);Q(1;2) lần lượt thuộc cạnh AB,BC,CD,AD. Hãy lập phương trình cạnh AB của hình vuông.

Câu 15 :

Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng \[{d_1}:x - 7y + 17 = 0,\] \[{d_2}:x + y - 5 = 0\]. Viết phương trình đường thẳng d qua điểm M(0;1) tạo với \[{d_1},{d_2}\;\] một tam giác cân tại giao điểm của \[{d_1},{d_2}\].

Câu 16 :

Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.

Câu 17 :

Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0),B(−2;4),C(−1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng \[\left( \Delta \right):3x - y - 5 = 0\;\]sao cho hai tam giác MAB,MCD có diện tích bằng nhau.

Câu 18 :

Trong mặt phẳng với hệ toạ độ Oxy, cho \[\Delta ABC\] có đỉnh A(1;2), phương trình đường trung tuyến \[BM:2x + y + 1 = 0\;\] và phân giác trong \[CD:x + y - 1 = 0\]. Viết phương trình đường thẳng BC.

Câu 19 :

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của 2 đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng \[\Delta :x + y - 5 = 0.\]. Viết phương trình đường thẳng AB.

Câu 20 :

Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC có phương trình đường phân giác trong góc A d 1: x + y +2=0, phương trình đường cao vẽ từ B d 2:2 x y +1=0, cạnh AB đi qua M (1;−1). Tìm phương trình cạnh AC .

Câu 21 :

Xét trong mặt phẳng tọa độ Oxy, cặp điểm nào dưới đây nằm cùng phía so với đường thẳng \[x - 2y + 3 = 0?\]

Câu 22 :

Trong mặt phẳng với hệ trục tọa độ Oxy , cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Câu 23 :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là:

Câu 24 :

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

Câu 25 :

Tính khoảng cách từ điểm (–2;2) đến đường thẳng \[\Delta :\;5x - 12y + 8 = 0\;\]bằng:

Câu 26 :

Khoảng cách giữa \[{{\rm{\Delta }}_1}:3x + 4y = 12\] và \[{\Delta _2}:6x + 8y - 11 = 0\] là:

Câu 27 :

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Câu 28 :

Trong mặt phẳng Oxy cho điểm A(−1;2);B(3;4) và đường thẳng \[{\rm{\Delta }}:\,\,x - 2y - 2 = 0\]. Tìm điểm \[M \in \Delta \] sao cho \[2A{M^2} + M{B^2}\] có giá trị nhỏ nhất.