ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hệ phương trình bậc nhất hai ẩn và hệ phương trình

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = 9}\\{x.y = 90}\end{array}} \right.\)có nghiệm là :

Câu 2 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.\)

Câu 3 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :

Câu 4 :

Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?

Câu 5 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) có nghiệm là :

Câu 6 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y + xy = 11}\\{{x^2} + {y^2} + 3\left( {x + y} \right) = 28}\end{array}} \right.\) có nghiệm là :

Câu 7 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?

Câu 8 :

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?

Câu 9 :

Các cặp nghiệm (x;y) của hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{\left| x \right| + 2\left| y \right| = 3}\\{7x + 5y = 2}\end{array}} \right.\) là :

Câu 10 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^3} - 3x = {y^3} - 3y}\\{{x^6} + {y^6} = 27}\end{array}} \right.\)có bao nhiêu nghiệm ?

Câu 11 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right.\) có bao nhiêu nghiệm (x;y) ?

Câu 12 :

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = m + 1}\\{{x^2}y + {y^2}x = 2{m^2} - m - 3}\end{array}} \right.\)và các mệnh đề :

(I) Hệ có vô số nghiệm khi m = −1 .

(II) Hệ có nghiệm khi \(m >\frac{3}{2}\).

(III) Hệ có nghiệm với mọi m .

Các mệnh đề nào đúng ?

Câu 13 :

Cho hệ phương trình : \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + xy - {y^2} = 0}\\{{x^2} - xy - {y^2} + 3x + 7y + 3 = 0}\end{array}} \right.\). Các cặp nghiệm (x;y) sao cho x,y đều là các số nguyên là :

Câu 14 :

Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?

Câu 15 :

Hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y = 5}\\{{x^2} - {y^2} = 15}\end{array}} \right.\) có nghiệm là

Câu 16 :

Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + y = 11}\\{5x - 4y = 8}\end{array}} \right.\)là

Câu 17 :

Gọi (x0;y0) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.\)

Tìm \[{x_0} + {\rm{ }}{y_0}\]

Câu 18 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} = 3x - y}\\{{y^2} = 3y - x}\end{array}} \right.\) có bao nhiêu nghiệm?

Câu 19 :

Một số tự nhiên có hai chữ số có dạng \(\overline {ab} \)biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng \(\frac{4}{5}\) số ban đầu trừ đi 10. Khi đó \({a^2} + {b^2}\) bằng

Câu 20 :

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{{(2x + y)}^2} - 5(4{x^2} - {y^2}) + 6(4{x^2} - 4xy + {y^2}) = 0}\\{2x + y + \frac{1}{{2x - y}} = 3}\end{array}} \right.\)có một nghiệm (x 0 ;y 0 ) thỏa mãn \({x_0} >\frac{1}{2}\). Khi đó \[P = {x_0} + y_0^2\] có giá trị là

Câu 21 :

Khi hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 2my - z = 1}\\{2x - my - 2z = 2}\\{x - (m + 4)y - z = 1}\end{array}} \right.\)có nghiệm (x;y;z) với \(\left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - \frac{4}{3}}\end{array}} \right.\), giá trị \[T = 2017x - 2018y - 2017z\;\] là

Câu 22 :

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 2xy + 8x = 3{y^2} + 12y + 9}\\{{x^2} + 4y + 18 - 6\sqrt {x + 7} - 2x\sqrt {3y + 1} = 0}\end{array}} \right.\)có nghiệm là (a;b). Khi đó giá trị biểu thức \[T = 5{a^2} + 4{b^2}\]

Câu 23 :

Cho (x;y) với x, y nguyên là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{xy + {y^2} + x = 7y\left( 1 \right)}\\{\frac{{{x^2}}}{y} + x = 12\left( 2 \right)}\end{array}} \right.\) thì tích xy bằng

Câu 24 :

Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 2\left| x \right| = 0}\\{{x^2} = {y^2} - 1}\end{array}} \right.\)ta được nghiệm (x;y). Khi đó \[{x^2} + {y^2}\;\] bằng: