ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Giới hạn của dãy số

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Dãy số nào sau đây có giới hạn 0?

Câu 2 :

Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.

Câu 3 :

Dãy số nào dưới đây không có giới hạn 0?

Câu 4 :

Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì:

Câu 5 :

Cho \[n \in {N^ * }\] nếu \[|q| < 1\;\]thì:

Câu 6 :

Dãy số (un) có giới hạn là số thực L nếu:

Câu 7 :

Giả sử \[\lim {u_n} = L\]. Khi đó:

Câu 8 :

Cho \[\lim {u_n} = L\]. Chọn mệnh đề đúng:

Câu 9 :

Giả sử \[\lim {u_n} = L,\lim {v_n} = M\]. Chọn mệnh đề đúng:

Câu 10 :

Giả sử \[\lim {u_n} = L,\lim {v_n} = M\] và c là một hằng số. Chọn mệnh đề sai:

Câu 11 :

Cho cấp số nhân lùi vô hạn \[\left( {{u_n}} \right)\]công bội q. Đặt \[S = {u_1} + {u_2} + ... + {u_n} + ...\] thì:

Câu 12 :

Chọn mệnh đề sai:

Câu 13 :

Cho các dãy số \[{u_n} = \frac{1}{n},n \ge 1\]và \({v_n} = {n^2},n \ge 1\). Khi đó:

Câu 14 :

Trong các khẳng định sau, khẳng định nào sai:

Câu 15 :

Gọi S là tổng của cấp số nhân lùi vô hạn \[\left( {{u_n}} \right)\;\]có công bội \[q\left( {\left| q \right| < 1} \right)\]. Khẳng định nào sau đây đúng ?

Câu 16 :

Cho \[{u_n} = \frac{{1 - 4n}}{{5n}}\]. Khi đó \[lim\,{u_n}\]bằng?

Câu 17 :

Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?

Câu 18 :

Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?

Câu 19 :

Cho \[{u_n} = \frac{{{3^n} + {5^n}}}{{{5^n}}}\]. Khi đó \[lim\,{u_n}\]bằng?

Câu 20 :

Trong các giới hạn sau giới hạn nào bằng −1?

Câu 21 :

Giá trị \[\lim \left( {{n^3} - 2n + 1} \right)\] bằng

Câu 22 :

Giới hạn \[\lim \frac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}\] bằng?

Câu 23 :

Giới hạn \[\lim \frac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}\] bằng?

Câu 24 :

Giới hạn \[\lim \frac{{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} }}{{2n - 1}}\] bằng?

Câu 25 :

Giới hạn \[\lim \frac{{2{n^2} - n + 4}}{{\sqrt {2{n^4} - {n^2} + 1} }}\] bằng?

Câu 26 :

Giới hạn \[\lim \left( {\sqrt {{n^2} - n} - n} \right)\] bằng?

Câu 27 :

Giới hạn \[\lim \left( {\sqrt {{n^2} - n + 1} - \sqrt {{n^2} + 1} } \right)\] bằng?

Câu 28 :

Cho dãy số \[\left( {{u_n}} \right)\]với \[{u_n} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + .... + \frac{1}{n} - \frac{1}{{n + 1}}\]. Khi đó \[lim\,{u_n}\] bằng?

Câu 29 :

Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]

Khi đó \[lim\,{u_n}\] bằng?

Câu 30 :

Giá trị \[\lim \frac{{\sin \left( {n!} \right)}}{{{n^2} + 1}}\] bằng

Câu 31 :

Cho dãy số \[({u_n})\]với \[{u_n} = \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\] Khi đó \[lim\,{u_n}\] bằng?

Câu 32 :

Cho dãy số \[({u_n})\]xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 2}\\{{u_{n + 1}} = \frac{{{u_n} + 1}}{2},\left( {n \ge 1} \right)}\end{array}} \right.\) Khi đó mệnh đề nào sau đây là đúng?

Câu 33 :

Cho các số thực a, b thỏa \[\left| a \right| < 1,\;\;\left| b \right| < 1\]. Tìm giới hạn \[I = lim\frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\].

Câu 34 :

Cho dãy số \[\left( {{u_n}} \right)\]xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_{n + 1}} = \sqrt {{u_n}({u_n} + 1)({u_n} + 2)({u_n} + 3) + 1} }\end{array}} \right.\left( {n \ge 1} \right)\) Đặt \[{v_n} = \sum\limits_{i = 1}^n {\frac{1}{{{u_i} + 2}}} \]. Tính \[lim\,{v_n}\]bằng?

Câu 35 :

Giá trị của \[B = {\rm{lim}}\frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }}\] bằng:

Câu 36 :

\[\lim \left( {\frac{2}{n} + \frac{3}{{{n^2}}}} \right)\]bằng

Câu 37 :

Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].

Câu 38 :

\[\lim \frac{{n + 1}}{{2n - 3}}\]bằng

Câu 39 :

Cho tam giác đều ABC cạnh a. Tam giác \[{A_1}{B_1}{C_1}\] có đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \[{A_2}{B_2}{C_2}\] có các đỉnh là trung điểm các cạnh của tam giác \[{A_1}{B_1}{C_1}\],…, tam giác AnBnCnAnBnCn có các đỉnh là trung điểm các cạnh của tam giác \[{A_{n - 1}}{B_{n - 1}}{C_{n - 1}} \ldots .{\rm{ }}Goi\;P,{P_1},{P_2},...,{P_n},...\] là chu vi của các tam giác \[ABC,{A_1}{B_1}{C_1},{A_2}{B_2}{C_2},...,{A_n}{B_n}{C_n},...\] Tìm tổng \[P,{P_1},{P_2},...,{P_n},...\]

Câu 40 :

Dãy \[\left( {{u_n}} \right)\]có giới hạn \[ - \infty \] ta viết là:

Câu 41 :

Cho cấp số nhân \[{u_n} = \frac{1}{{{2^n}}},\forall n \ge 1\]. Khi đó:

Câu 42 :

Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng