Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Tập nghiệm SS của bất phương trình \[5x - 1 \ge \frac{{2x}}{5} + 3\]là:

Câu 2 :

Tổng các nghiệm nguyên của bất phương trình \(\frac{{x - 2}}{{\sqrt {x - 4} }} \le \frac{4}{{\sqrt {x - 4} }}\) bằng:

Câu 3 :

Tổng các nghiệm nguyên của bất phương trình \[x\left( {2 - x} \right) \ge x\left( {7 - x} \right) - 6\left( {x - 1} \right)\] trên đoạn \[\left[ { - 10;10} \right]\;\]bằng:

Câu 4 :

Tập nghiệm của bất phương trình: \[ - {x^2} + 6x + 7\; \ge 0\;\] là:

Câu 5 :

Giải bất phương trình \[ - 2{x^2} + 3x - 7 \ge 0.\].

Câu 6 :

Cho bất phương trình \[{x^2} - 8x + 7 \ge 0\]. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

Câu 7 :

Giải bất phương trình \[x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right)\] ta được nghiệm:

Câu 8 :

Cặp bất phương trình nào sau đây là tương đương?

Câu 9 :

Xác định m để với mọi x ta có \[ - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\]

Câu 10 :

Bất phương trình x 1 3 x + 2 5 < 0 có nghiệm là

Câu 11 :

Bất phương trình \[\sqrt { - {x^2} + 6x - 5} >8 - 2x\]có nghiệm là:

Câu 12 :

Tập nghiệm SS của bất phương trình \[\frac{{ - \,2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} \le - 1\]là

Câu 13 :

Nghiệm của hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} - x - 6 \le 0}\\{{x^3} + {x^2} - x - 1 \ge 0}\end{array}} \right.\) là:

Câu 14 :

Bất phương trình: \[\left| {{x^4} - 2{x^2} - 3} \right| \le {x^2} - 5\] có bao nhiêu nghiệm nghiệm nguyên?

Câu 15 :

Cho bất phương trình: \[{x^2} - 2x \le \left| {x - 2} \right| + ax - 6\]. Giá trị dương nhỏ nhất của a để bất phương trình có nghiệm gần nhất với số nào sau đây:

Câu 16 :

Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:

Câu 17 :

Hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 1 \le 0}\\{x - m >0}\end{array}} \right.\)có nghiệm khi

Câu 18 :

Xác định m để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn –1.

Câu 19 :

Để phương trình sau có 4 nghiệm phân biệt: \[\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\] thì giá trị của tham số a là:

Câu 20 :

Để bất phương trình \[\sqrt {(x + 5)(3 - x)} \le {x^2} + 2x + a\] nghiệm đúng \[\forall x \in [ - 5;3]\]tham số a phải thỏa điều kiện:

\[\sqrt {\left( {x + 5} \right)\left( {3 - x} \right)} \le {x^2} + 2x + a \Leftrightarrow \sqrt { - {x^2} - 2x + 15} - {x^2} - 2x \le a\]

Câu 21 :

Để phương trình: \[\left| {x + 3} \right|(x - 2) + m - 1 = 0\] có đúng một nghiệm, các giá trị của tham số m là:

Câu 22 :

Bất phương trình \[\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \] có nghiệm là

Câu 23 :

Tập nghiệm của bất phương trình \[\left| {x - 3} \right| >- 1\]là

Câu 24 :

Tìm m để bất phương trình có nghiệm .

Câu 25 :

Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.

Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm 2 .

Câu 26 :

Tập nghiệm của bất phương trình \[\left( {\sqrt {2x + 4} - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1} + \sqrt {x + 4} } \right) \le x + 3\] là tập con của tập hợp nào sau đây?

Câu 27 :

Cho biểu thức \[f\left( x \right) = \left( {x + 5} \right)\left( {3 - x} \right).\]Tập hợp tất cả các giá trị của x thỏa mãn bất phương trình f(x) ≤ 0 là

Câu 28 :

Bất phương trình : \[\left| {3x - 3} \right| \le \left| {2x + 1} \right|\] có nghiệm là

Câu 29 :

Cho biểu thức \[f\left( x \right) = \frac{1}{{3x - 6}}.\] Tập hợp tất cả các giá trị của x để f(x) ≤ 0 là

Câu 30 :

Cho biểu thức \[f\left( x \right) = \frac{{\left( {x + 3} \right)\left( {2 - x} \right)}}{{x - 1}}.\]. Tập hợp tất cả các giá trị của xx thỏa mãn bất phương trình f(x) >0 là

Câu 31 :

Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình \[\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) >0\] là

Câu 32 :

Tập nghiệm của bất phương trình \[2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right) >0\]là

Câu 33 :

Nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình \[\left( {x - 1} \right)\sqrt {x\left( {x + 2} \right)} \ge 0\]là

Câu 34 :

Tập nghiệm của bất phương trình \[\frac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1\] là

Câu 35 :

Bất phương trình \[\frac{4}{{x - 1}} - \frac{2}{{x + 1}} < 0\]có tập nghiệm là

Câu 36 :

Nghiệm của bất phương trình \[\left| {2x - 3} \right| \le 1\]là

Câu 37 :

Bất phương trình \[\frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} < \frac{{4x}}{{3x - {x^2}}}\] có nghiệm nguyên lớn nhất là

Câu 38 :

Tập nghiệm của bất phương trình \[\left| {5x - 4} \right| \ge 6\]có dạng \[S = ( - \infty ;a] \cup [b; + \infty ).\;\] Tính tổng \[P = 5a + b.\].

Câu 39 :

Hỏi có bao nhiêu giá trị nguyên x trong \[\left[ { - 2017;2017} \right]\;\]thỏa mãn bất phương trình \[|2x + 1| < 3x\;\]?

Câu 40 :

Số nghiệm nguyên thỏa mãn bất phương trình \[\left| {x + 2} \right| + \left| { - 2x + 1} \right| \le x + 1\]là

Câu 41 :

Bất phương trình \[\left| {x + 2} \right| - \left| {x - 1} \right| < x - \frac{3}{2}\]có tập nghiệm là

Câu 42 :

Bạn An chọn một số nguyên, nhân số đó với 4 rồi trừ đi 30. Lấy kết quả có được nhân với 2 và cuối cùng trừ đi 10 thì được một số có hai chữ số. Số lớn nhất An có thể chọn được có hàng đơn vị bằng: