Đề thi thử THPTQG môn Toán chọn lọc, có lời giải chi tiết (Đề số 1)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Đồ thị sau đây là của hàm số nào?

Câu 2 :

Cho tích phân π 3 π 2 sin x cosx + 2 d x = a ln 5 + b ln 2 với a , b Z Mệnh đề nào dưới đây đúng?

Câu 3 :

Cho a là một số dương lớn hơn 1. Mệnh đề nào dưới đây sai?

Câu 4 :

Hàm số nào sau đây có ba điểm cực trị?

Câu 5 :

Tính nguyên hàm I = 2 x 2 - 7 x + 5 x - 3 d x

Câu 6 :

Cho hình chóp đều S.ABCD có cạnh đáy 2a và cạnh bên a 6 . Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABCD

Câu 7 :

Mệnh đề nào dưới đây đúng?

Câu 8 :

Số véc- tơ khác 0 có điểm đầu, điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là

Câu 9 :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho A 2 ; - 3 , B 1 ; 0 . Phép tịnh tiến theo u = 4 ; - 3 biến điểm A, B tương ứng thành A ' , B ' . Khi đó, độ dài đoạn thẳng A ' B ' bằng:

Câu 10 :

Cho mặt phẳng α : 2 x - 3 y - 4 z + 1 = 0 . Khi đó, một véc- tơ pháp tuyến của α

Câu 11 :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với A B = a , B C = a 3 . Cạnh SA vuông góc với mặt phẳng đáy và S A = 2 a 3 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC

Câu 12 :

Tập xác định của hàm số y = tan2x là

Câu 13 :

Hình chóp S.ABC có đáy là tam giác vuông tại B có A B = a , A C = 2 a . S A vuông góc với mặt phẳng đáy, S A = 2 a . Gọi j là góc tạo bởi hai mặt phẳng S A C , S B C . Tính s o s φ = ?

Câu 14 :

Tìm nguyên hàm của hàm số f x = x - sin 6 x

Câu 15 :

Trong các mệnh đề sau. Mệnh đề sai là

Câu 16 :

Cho giới hạn I = lim 4 n 2 + 5 + n 4 n - n 2 + 1 . Khi đó, giá trị của I là

Câu 17 :

Hình chóp S.ABCD đáy là hình chữ nhật có A B = a , A D = 2 A . S A vuông góc với mặt phẳng đáy, S A = a 3 . Thể tích khối chóp S.ABCD là:

Câu 18 :

Cho hai mặt phẳng α : 3 x - 2 y + 2 z + 7 = 0 , β : 5 x - 4 y + 3 z + 1 = 0 . Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả ( α ) β là:

Câu 19 :

Gọi α là nghiệm lớn nhất của phương trình 3 cos x + cos 2 x - cos 3 x + 1 = 2 sinx . sin 2 x thuộc khoảng 0 ; 2 π . Tính s i n α - π 4

Câu 20 :

Gọi m là giá trị nhỏ nhất của hàm số y = 3 x + 1 x - 2 trên [ - 1 ; 1 ] . Khi đó giá trị của m là

Câu 21 :

Tìm tất cả các giá trị của m để hàm số y = m - 1 x 3 - 3 m - 1 x 2 + 3 x + 2 đồng biến trên R

Câu 22 :

Tìm m để hàm số f x = x 2 + 4 x + 3 x + 1 khi x > - 1 m x + 2 khi x - 1 liên tục tại điểm x = -1

Câu 23 :

Gọi I là giao điểm của hai đường tiệm cận của đồ thị hàm số y = 2 x - 3 x + 1 . Khi đó, điểm I nằm trên đường thẳng có phương trình

Câu 24 :

Trong các hàm số sau, hàm số nào nghịch biến trên R

Câu 25 :

Cho điểm A 2 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; 2 , D 2 ; 2 ; 2 . Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là

Câu 26 :

Cho hai tích phân - 2 5 f x d x = 8 ; 5 - 2 g x d x = 3 . Tính I = - 2 5 f x - 4 g x - 1 d x .

Câu 27 :

Phương trình tiếp tuyến của đồ thị hàm số y = x + 1 x - 2 tại điểm có hoành độ bằng 3 là

Câu 28 :

Tính tích phân I = 0 π x 2 cos 2 2 xdx bằng cách đặt u = x 2 d v = cos 2 x dx . Mệnh đề nào dưới đây đúng?

Câu 29 :

Khoảng đồng biến của hàm số y = - x 3 + 3 x 2 + 9 x - 1

Câu 30 :

Phương trình 3 2 x + 1 - 28 . 3 x + 9 = 0 có hai nghiệm là x 1 , x 2 x 1 < x 2 . Tính giá trị T = x 1 - 2 x 2

Câu 31 :

Cho phương trình 2 - m 3 - 3 m 2 + 1 . log 81 x 3 - 3 x 2 + 1 + 2 + 2 - x 3 - 3 x 2 + 1 - 2 . log 3 1 m 3 - 3 m 2 + 1 + 2 = 0 . Gọi S là tập hợp tất cả các giá trị m nguyên để phương trình đã cho có số nghiệm thuộc đoạn 6 ; 8 . Tính tổng bình phương tất cả các phần tử của tập S.

Câu 32 :

Sau khi khai triển và rút gọn biểu thức f x = x 2 + 3 x 12 + 2 x 3 + 1 x 2 21 thì f(x) có bao nhiêu số hạng?

Câu 33 :

Cho hàm số y = 2 x - 4 x + 1 có đồ thị ( C ) và điểm A - 5 ; 5 . Tìm m để đường thẳng y = - x + m cắt đồ thị ( C ) tại hai điểm phân biệt M và N sao cho tứ giác OAMN là hình bình hành ( O là gốc tọa độ).

Câu 34 :

Tính tổng tất cả các giá trị nguyên của hàm số y = 3 sin x - c o sx - 4 2 sin x + c o sx - 3

Câu 35 :

Cho tích phân I = 0 π 2 x 2 + 2 x + cos x cos x + 1 - sin x x + cos x d x = a π 2 + b - ln c π . với a, b, c là các số hữu tỉ. Tính giá trị của biểu thức P = a c 3 + b

Câu 36 :

Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4/3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 π 3 c m 3 . Tính thể tích nước ban đầu ở trong bể

Câu 37 :

Cho hàm số y = x 3 + 3 x có đồ thị là C , M 1 là điểm trên C có hoành độ bằng 1. Tiếp tuyến tại điểm M 1 cắt C tại điểm M 2 khác M 1 Tiếp tuyến tại điểm M 2 cắt C tại điểm M 3 khác M 2 . Tiếp tuyến tại điểm M n - 1 cắt C tại điểm M n khác M n - 1 n 4 , n ? Tìm số tự nhiên n thỏa mãn điều kiện y n - 3 x n + 2 21 = 0

Câu 38 :

Một hình trụ có đường cao 10 cm và bán kính đáy bằng 5 cm. Gọi (P) là mặt phẳng song song với trục của hình trụ và cách trục 4 cm Tính diện tích thiết diện của hình trụ khi cắt bởi (P)

Câu 39 :

Trong hội chợ tết Mậu Tuất 2018, một công ty sữa muốn xếp 900 hộp sữa theo số lượng 1, 3, 5,…từ trên xuống dưới (số hộp sữa trên mỗi hàng xếp từ trên xuống là các số lẻ liên tiếp - mô hình như hình bên).

Hàng dưới cùng có bao nhiêu hộp sữa?

Câu 40 :

Cho hàm số f(x) có đạo hàm trên R thỏa mãn f ' x - 2018 f x = 2018 . x 2017 . e 2018 x với mọi x R f 0 = 2018 . Tính giá trị f(1)

Câu 41 :

Đội học sinh giỏi trường THPT Lý Thái Tổ gồm có 8 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Chọn ngẫu nhiên 8 học sinh. Xác suất để trong 8 học sinh được chọn có đủ 3 khối là

Câu 42 :

Cho tam giác ABC với A 2 ; - 3 ; 2 , B 1 ; - 2 ; 2 , C 1 ; - 3 ; 3 . Gọi A ' , B ' , C ' lần lượt là hình chiếu vuông góc của A, B, C lên mặt phẳng α : 2 x - y + 2 z - 3 = 0 . Khi đó, diện tích tam giác A’B’C’ bằng

Câu 43 :

Bất phương trình log 2 log 1 3 3 x - 7 x + 3 0 có tập nghiệm là a ; b . Tính giá trị P = 3 a - b

Câu 44 :

Cho hình lập phương A B C D , A ' B ' C ' D ' có cạnh bằng a. Gọi K là trung điểm của DD ¢ . Tính khoảng cách giữa hai đường thẳng C K , A ' D

Câu 45 :

Cho điểm M nằm trên cạnh SA, điểm N nằm trên cạnh SB của khối chóp tam giác S.ABC sao cho S M M A = 1 2 ; S N N B = 2 . Mặt phẳng α đi qua MN và song song với SC chia khối chóp thàng 2 phần. Gọi V 1 là thể tích của khối đa diện chứa A , V 2 là thể tích của khối đa diện còn lại. Tính tỉ số V 1 V 2

Câu 46 :

Cho hàm số y = log 2018 1 x có đồ thị C 1 và hàm số y = f x có đồ thị C 2 Biết C 1 C 2 đối xứng nhau qua gốc tọa độ. Hỏi hàm số y = f x nghịch biến trên khoảng nào sau đây

Câu 47 :

Cho a, b là các số thực dương thỏa mãn log 4 a = log 25 b = log 4 b - a 2 . Tính giá trị a b

Câu 48 :

Cho C m : 2 x 3 - 3 m + 3 x 2 + 6 m x - 4 . Gọi T là tập hợp các giá trị của m thỏa mãn C m có đúng hai điểm chung với trục hoành, tính tổng S các phần tử của T

Câu 49 :

Một người lần đầu gửi ngân hàng 200 triệu đồng với kì hạn 3 tháng, lãi suất 4%/quý và lãi từng quý sẽ được nhập vào vốn. Sau đúng 6 tháng, người đó gửi thêm 150 triệu đồng với kì hạn và lãi suất như trước đó. Hỏi tổng số tiền người đó nhận được sau hai năm kể từ khi gửi thêm tiền lần hai là bao nhiêu?

Câu 50 :

Trong không gian với hệ tọa độ Oxyz, cho A 1 ; 2 ; - 3 , B 3 2 ; 3 2 ; - 1 2 , C 1 ; 1 ; 4 , D 5 ; 3 ; 0 , Gọi S 1 là mặt cầu tâm A bán kính bằng 3, S 2 là mặt cầu tâm B bán kính bằng 3 2 . Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu S 1 , S 2 đồng thời song song với đường thẳng đi qua 2 điểm C D, .