Đề thi thử thpt quốc gia môn Toán cực hay có lời giải (Đề 5)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Với α là số thực bất kỳ, mệnh đề nào sau đây sai?

Câu 2 :

Giới hạn lim x 2 x + 1 x + 2 2 bằng:

Câu 3 :

Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường thẳng y = x e x , y = 0 , x = 0 , x = 1 xung quanh trục Ox là

Câu 4 :

Cho hình lập phương ABCD.A'B'C'D' (tham khảo hình vẽ bên). Góc giữa hai đường thẳng AC và A'D bằng

Câu 5 :

Số cách sắp xếp 6 học sinh ngồi vào 6 trong 10 ghế trên một hàng ngang là:

Câu 6 :

Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số sau.

Hỏi đó là đồ thị của hàm số nào?

Câu 7 :

Trong không gian Oxyz, đường thẳng d : x 3 1 = y + 2 1 = z 4 2 cắt mặt phẳng O x y tại điểm có tọa độ là:

Câu 8 :

Đồ thị hàm số nào sau đây có tiệm cận ngang?

Câu 9 :

Tập nghiệm của bất phương trình 2 x < 2 là:

Câu 10 :

Trong không gian Oxyz, điểm M 3 ; 4 ; 2 thuộc mặt phẳng nào trong các mặt phẳng sau?

Câu 11 :

Trong không gian Oxyz, cho a 3 ; 2 ; 1 và điểm A 4 ; 6 ; 3 . Tìm tọa độ điểm B thỏa mãn A B = a .

Câu 12 :

Trong hình vẽ bên, điểm M biểu diễn số phức z. Số phức z là:

Câu 13 :

Cho hàm số y = f x có tập xác định ; 4 và có bảng biến thiên như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:

Câu 14 :

Tất cả các nguyên hàm của hàm số f x = 1 2 x + 3 là:

Câu 15 :

Cho hình chóp tam giác đều SABC có S A = 2 a , A B = 3 a . Khoảng cách từ S đến mặt phẳng (ABC) bằng:

Câu 16 :

Tích phân 0 1 x x 2 + 3 d x bằng:

Câu 17 :

Trong không gian Oxyz, mặt phẳng

P : 2 x + 6 y + z 3 = 0 cắt trục Oz và đường thẳng d : x 5 1 = y 2 = z 6 1 lần lượt tại A và B. Phương trình mặt cầu đường kính AB là:

Câu 18 :

Phương trình bậc hai nào sau đây có nghiệm là 1 + 2 i ?

Câu 19 :

Cho hình nón có góc ở đỉnh bằng 60 0 bán kính đáy bằng a. Diện tích xung quanh của hình nón bằng:

Câu 20 :

Cho biết F x = 1 3 x 3 + 2 x 1 x là một nguyên hàm của f x = x 2 + a 2 x 2 . Tìm nguyên hàm của g x = x cos a x

Câu 21 :

Cho khối chóp SABC có thể tích V. Các điểm A’, B’, C’ tương ứng là trung điểm các cạnh SA, SB, SC. Thể tích khối chóp SA’B’C’ bằng:

Câu 22 :

Giá trị nhỏ nhất của hàm số y = x e x trên đoạn 2 ; 0 là:

Câu 23 :

Tập xác định của hàm số y = 1 + log 2 x + log 2 1 x 3 là:

Câu 24 :

Cho hàm số y = f (x) có bảng biến thiên như hình vẽ bên. Số nghiệ m của phương trình f x 1 = 2 là:

Câu 25 :

Có bao nhiêu số phức z thỏa mãn 1 + i z + 2 i z ¯ = 13 + 2 i ?

Câu 26 :

Cho hàm bậc bốn y = f x . Hàm số y = f ' x có đồ thị như hình bên. Số điểm cực đại của hàm số f x 2 + 2 x + 2 là:

Câu 27 :

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, A B = a 3 , B C = 2 a , đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 30 0 (tham khảo hình vẽ). Diện tích mặt cầu ngoại tiếp lăng trụ đã cho bằng

Câu 28 :

Một cổng chào có dạng hình parabol chiều cao 18m, chiều rộng chân đế 12m. Người ta căng sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi parabol thành ba phần có diện tích bằng nhau (xem hình vẽbên). Tỉ số A B C D bằng :

Câu 29 :

Số giá trị nguyên m < 10 để hàm số y = ln x 2 + m x + 1 đồng biến trên 0 ; + là:

Câu 30 :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 0 (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và SC bằng :

Câu 31 :

Cho hàm số y = a x 3 + c x + d , a 0 min ; 0 f x = f 2 . Giá trị lớn nhất của hàm số y = f(x) trên đoạn [ 1;3] bằng :

Câu 32 :

Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0,9; 0,7 và 0,8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên.

Câu 33 :

Sau 1 tháng thi công thì công trình xây dựng Nhà học thể dục của trường X đã thực hiện được một khối lượng công việc. Nếu tiếp tục với tiến độ như vậy thì dự kiến sau đúng 23 tháng nữa công trình sẽ hoàn thành. Để sớm hoàn thành công trình và kịp đưa vào sử dụng, công ty xây dựng quyết định từ tháng thứ 2, mỗi tháng tăng 4% khối lượng công việc so với tháng kề trước. Hỏi công trình sẽ hoàn thành ở tháng thứ mấy sau khi khởi công?

Câu 34 :

Cho hàm số y = f x có đạo hàm liên tục trên [ 1;2] thỏa mãn f 1 = 4 f x = x f ' x 2 x 3 3 x 2 . Tính giá trị f (2)

Câu 35 :

Cho hàm số y = f (x) có đồ thị như hình vẽ bên. Tìm số giá trị nguyên của m để phương trình f x 2 2 x = m có đúng 4 nghiệm thực phân biệt thuộc đoạn 3 2 ; 7 2

Câu 36 :

Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về đúng ô xuất phát.

Câu 37 :

Cho hàm số f x = ln 1 1 x 2 . Biết rằng f 2 + F 3 + ... + f 2018 = ln a ln b + ln c ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a < b < c < d . . Tính P = a + b + c + d .

Câu 38 :

Trong không gian Oxyz, cho hai điểm A 1 ; 3 ; 2 ; B 3 ; 7 ; 18 và mặt phẳng P : 2 x y + z + 1 = 0. Điểm M a ; b ; c thuộc (P) sao cho mặt phẳng (ABM) vuông góc với (P) và M A 2 + M B 2 = 246. . Tính S = a + b + c

Câu 39 :

Cho hàm số y = x 3 + m x 2 + m x + 1 có đồ thị (C). Có bao nhiêu giá trị của m để tiếp tuyến có hệ số góc lớn nhất của (C) đi qua gốc tọa độ O ?

Câu 40 :

Cho phương trình log 2 x x 2 1 . log 5 x x 2 1 = log m x + x 2 1 . Có bao nhiêu giá trị nguyên dương khác 1 của m sao cho phương trình đã cho có nghiệm x lớn hơn 2?

Câu 41 :

Trong các số phức z thỏa mãn z 2 + 1 = 2 z , gọi z 1 z 2 lần lượt là các số phức có môđun lớn nhất và nhỏ nhất. Khi đó môđun lớn nhất của số phức w = z 1 + z 2 là:

Câu 42 :

Cho khai triển 1 + 2 x n = a 0 + a 1 x + a 2 x 2 + ... + a n x n , n 1. Tìm số giá trị nguyên của n với n 2018 sao cho tồn tại k 0 k n 1 thỏa mãn a k = a k + 1

Câu 43 :

Trong không gian Oxyz, cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x 3 1 = y 3 2 = z 2 1 , phương trình đường phân giác trong của góc C là x 2 2 = y 4 1 = z 2 1 . Đường thẳng AB có vecto chỉ phương là :

Câu 44 :

Trong không gian Oxyz, cho đường thẳng d : x + 2 4 = y 1 4 = z + 2 3 và mặt phẳng P : 2 x y + 2 z + 1 = 0. Đường thẳng đi qua E 2 ; 1 ; 2 , song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng có một vector chỉ phương u m ; n ; 1 . Tính T = m 2 n 2

Câu 45 :

Cho hình chóp S.ABCD có ABCD là hình bình hành, A B = 2 a , B C = a , A B C = 120 0 . Cạnh bên S D = a 3 và SD vuông góc với mặt phẳng đáy (tham khảo hình vẽ bên). Tính sin của góc tạo bởi SB và mặt phẳng (SAC).

Câu 46 :

Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện : tỉ số giữa diện tích của tam giác ABC và thể tích khối OABC bằng 3 2 Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng :

Câu 47 :

Cho hàm số y = f x liên tục trên 0 ; 1 thỏa mãn 0 1 x f x d x = 0 max 0 ; 1 f x = 1. Tích phân I = 0 1 e x f x d x thuộc khoảng nào trong các khoảng sau đây?

Câu 48 :

Cho hàm số f x = x 4 4 x 3 + 4 x 2 + a . Gọi M, m lần lượt là các giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên đoạn [ 0;2] Có bao nhiêu số nguyên a thuộc đoạn 3 ; 3 sao cho M 2 m ?

Câu 49 :

Cho hình chóp SABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC) , SAB

là tam giác đều cạnh a 3 , B C = a 3 , đường thẳng SC tạo với mặt phẳng (ABC) góc 60 0 . Thể tích của khối chóp SABC bằng: