Đề thi THPT Quốc gia môn Toán năm 2022 chọn lọc, có lời giải (Đề số 30)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho hàm số y = f x = a x 3 + b x 2 + c x + d có đồ thị như hình vẽ.

Khi đó phương trình f f 2 x = 1 có bao nhiêu nghiệm?

Câu 2 :

Rút gọn biểu thức P = a 3 + 1 . a 2 3 a 2 2 2 + 2 .

Câu 3 :

Cho tứ diện ABCD cạnh a. Gọi M là điểm thuộc cạnh BC sao cho BM=2MC. Gọi I,J lần lượt là trọng tâm các tam giác ABC và ABD. Mặt phẳng (IJM) chia tứ diện ABCD thành hai phần, thể tích của phần đa diện chứa đỉnh B tính theo a bằng

Câu 4 :

Cho hình hộp ABCD.A'B'C'D' có thể tích V. Gọi M,N,P lần lượt thuộc các cạnh A B , B C , A ' D ' sao cho A M = 1 2 A B , B N = 1 4 B C , A ' P = 1 3 A ' D ' . Thể tích của khối tứ diện M N P D ' tính theo V bằng

Câu 5 :

Biết tập nghiệm của bất phương trình 2 x < 3 2 2 x là khoảng (a;b). Tổng a+b bằng?

Câu 6 :

Đạo hàm của hàm số y = 13 x

Câu 7 :

Cho hàm số y=f(x) có đạo hàm trên và đồ thị hàm số y=f'(x) như hình bên. Khẳng định nào sau đây là đúng?

Câu 8 :

Một khối lăng trụ đứng tam giác có các cạnh đáy bằng 37 ; 13 ; 30 và diện tích xung quanh bằng 480. Khi đó thể tích khối lăng trụ bằng?

Câu 9 :

Cho hàm số y = x 2 x m nghịch biến trên khoảng ; 3 khi

Câu 10 :

Cho khối chóp tứ giác đều S.ABCD có AB=a. Thể tích khối chóp S.ABCD bằng a 3 2 3 . Khoảng cách từ C đến mặt phẳng (SAB) bằng

Câu 11 :

Cho hàm số y = x 2 2 x 1 x . Khẳng định nào sau đây đúng?

Câu 12 :

Cho hình nón xoay đường sinh l=2a. Thiết diện qua trục của nó là một tam giác cân có một góc bằng 120 0 . Thể tích V của khối nón đó là

Câu 13 :

Cho hai số thực a,b thỏa mãn 2 log 3 a 3 b = log 3 a + log 3 4 b và a>3b>0. Khi đó giá trị của a b

Câu 14 :

Cho tứ diện ABCD có các cạnh AB,AC và AD đôi một vuông góc. Các điểm M,N,P lần lượt là trung điểm của các đoạn thẳng B C , C D , B D . Biết rằng A B = 4 a ; A C = 6 a ; A D = 7 a . Thể tích V của khối tứ diện AMNP bằng

Câu 15 :

Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá mỗi căn là 3.000.000 đồng/tháng thì không có phòng trống, còn nếu cứ tăng giá mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yết giá bao nhiêu để doanh thu là lớn nhất

Câu 16 :

Cho khối lập phương ABCD.A'B'C'D' cạnh a. Gọi S là điểm thuộc đường thẳng AA' sao cho A' là trung điểm của SA. Thể tích phần khối chóp S.ABD nằm trong khối lập phương bằng

Câu 17 :

Cho hàm số y = x + 2 x + 1 C và đường thẳng d : y = x + m . Có bao nhiêu giá trị nguyên m thuộc khoảng (-10;10) để đường thẳng (d) cắt đồ thị (C) tại hai điểm về hai phía trục hoành?

Câu 18 :

Cho cấp số cộng u n có số hạng đầu u 1 = 2 và công sai d=-7. Giá trị u 6 bằng:

Câu 19 :

Cho hàm số y=f(x) có bảng biến thiên như sau.

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số g x = 1 2 f x 1

Câu 20 :

Số đường tiệm cận ngang của đồ thị hàm số y = 10000 x 2 x 2

Câu 21 :

Cho dãy số u n thỏa mãn điều kiện u 1 = 2020 u n + 1 = 1 3 u n , n * . Gọi S n = u 1 + u 2 + ... + u n là tổng của n số hạng đầu tiên của dãy số đã cho. Khi đó lim S n bằng

Câu 22 :

Số nghiệm âm của phương trình log x 2 3 = 0

Câu 23 :

Kí hiệu C n k là số các tổ hợp chập k của n phần tử, A n k là số các chỉnh hợp chập k của n phần tử. Cho tập X có 2020 phần tử. Số tập con gồm 10 phần tử của tập X bằng

Câu 24 :

Cho khối trụ tròn xoay có bán kính đường tròn đáy R=4a. Hai điểm A và B di động trên hai đường tròn đáy của khối trụ. Tính thể tích V của khối trụ tròn xoay đó biết rằng độ dài lớn nhất của đoạn AB là 10a

Câu 25 :

Tập xác định của hàm số y = x 1 2 3

Câu 26 :

Cho hàm số y = x 3 3 x . Nhận định nào dưới đây là đúng?

Câu 27 :

Với a là số thực dương, ln(7a)-ln(3a) bằng

Câu 28 :

Cho hàm số y = x 3 4 x + 5 1 . Đường thẳng d : y = 3 x cắt đồ thị hàm số (1) tại hai điểm phân biệt A,B. Độ dài đoạn thẳng AB bằng

Câu 29 :

Cho hình trụ tròn xoay có diện tích thiết diện qua trục là 100 a 2 . Diện tích xung quanh của hình trụ đó là

Câu 30 :

Số các số tự nhiên có ba chữ số đôi một khác nhau được lập từ các chữ số 1,2,3,4,5,6 bằng

Câu 31 :

Đồ thị sau đây là đồ thị của hàm số nào

Câu 32 :

Đường cong ở hình bên là đồ thị của hàm số nào sau đây?

Câu 33 :

Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ

Mệnh đề nào sau đây đúng?

Câu 34 :

Trên mặt phẳng Oxy, gọi S là tập hợp các điểm M(x;y) với x , y , x 3 , y 3. Lấy ngẫu nhiên một điểm M thuộc S. Xác suất để điểm M thuộc đồ thị hàm số y = x + 3 x 1 bằng

Câu 35 :

Số điểm cực trị của đồ thị hàm số y = x 3 + 1

Câu 36 :

Cho a và b lần lượt là số hạng thứ nhất và thứ chín của một cấp số cộng có công sai d 0. Giá trị của log 2 b a d bằng

Câu 37 :

Cho cấp số nhân u n có công bội bằng 3 và số hạng đầu là nghiệm của phương trình log 2 x = 2. Số hạng thứ năm của cấp số nhân bằng

Câu 38 :

Trong khai triển x y 3 y 4 12 hệ số của số hạng có số mũ của x gấp 5 lần số mũ của y là

Câu 39 :

Cho hàm số y=f(x) có bảng biến thiên như bên.

Khẳng định nào sau đây sai?

Câu 40 :

Cho hàm số y = a x b x 1 có đồ thị như hình vẽ

Khẳng định nào dưới đây là đúng?

Câu 41 :

Một hộp đựng 7 bi trắng, 6 bi đen, 3 bi đỏ. Chọn ngẫu nhiên 3 bi, xác suất 3 bi lấy ra khác màu nhau là

Câu 42 :

Số giá trị nguyên của tham số m để hàm số y = m x 4 m 3 x 2 + m 2 không có điểm cực đại là

Câu 43 :

Biết phương trình 3 + 5 2 + 15 3 5 x = 2 x + 3 có hai nghiệm x 1 , x 2 x 1 x 2 = log a b > 1 , trong đó a,b là các số nguyên tố, giá trị của biểu thức 2 a + b

Câu 44 :

Cho các số thực x,y thay đổi và thỏa mãn điều kiện 2 + 9 y 2 + 3 1 + x 2 x + 1 + 4 x 2 3 y = 0. Giá trị nhỏ nhất của biểu thức P = 3 y + x 2 2

Câu 45 :

Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh 2 β = 90 0 và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối nón bất kì thì chúng chỉ có đỉnh chung hoặc ngoài đỉnh chung đó ra chính có thể có chung một đường sinh duy nhất?

Câu 46 :

Cho lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh 2a. Biết A' cách đều ba đỉnh A,B,C và mặt phẳng (A'BC) vuông góc với mặt phẳng (AB'C'). Thể tích của khối lăng trụ ABC.A'B'C' tính theo a bằng

Câu 47 :

Cho hai hàm số y = a x , y = b x ( a , b là các số dương khác 1) có đồ thị là C 1 , C 2 như hình vẽ. Vẽ đường thẳng y = c c > 1 cắt trục tung và C 1 , C 2 lần lượt tại M,N,P. Biết rằng S O M N = 3 S O N P . Chọn khẳng định đúng trong các khẳng định sau

Câu 48 :

Một tổ gồm 10 học sinh gồm 4 học sinh nữ và 6 học sinh nam, xếp 10 học sinh thành một hàng dọc. Số cách xếp sao cho xuất hiện đúng 1 cặp (1 nữ và 1 nam) và nữ đứng trước nam là

Câu 49 :

Cho phương trình log 5 x 2020 m x 2 log 2 x x = 0. Số giá trị nguyên của m để phương trình đã cho có 4 nghiệm phân biệt là

Câu 50 :

Cho hàm số y=f(x) liên tục trên mỗi khoảng ; 1 1 ; + , có bảng biến thiên như hình bên. Tổng số đường tiệm cận (đứng và ngang) của đồ thị hàm số y = 2 f x + 1 f x