Đề số 15
Vui lòng cài đặt đề thi trước khi làm bài
Trong không gian với hệ tọa độ \[Oxyz,\] cho hai đường thẳng \[{d_1}:{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 2}}\] và \[{d_2}:{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 2}}.\] Khoảng cách giữa hai đường thẳng này bằng:
Diện tích hình phẳng giới hạn bởi đường thẳng \[y = x + 3\] và parabol \[y = 2{x^2} - x - 1\] bằng:
Phương trình \[{z^4} = 16\] có bao nhiêu nghiệm phức?
Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Hàm số \[y = {\left( {x - 1} \right)^{\frac{1}{3}}}\] có tập xác định là:
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{1}\] và mặt phẳng \[\left( Q \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x - y + 2z = 0.\] Viết phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {0; - 1;{\mkern 1mu} {\mkern 1mu} 2} \right),\] song song với đường thẳng \[\Delta \] và vuông góc với mặt phẳng \[\left( Q \right).\]
Tập nghiệm của bất phương trình \[{\log _{\frac{1}{2}}}x \le {\log _{\frac{1}{{\sqrt 2 }}}}\left( {2x - 1} \right)\] là:
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Số nghiệm thực của phương trình \[{\log _4}{x^2} = {\log _2}\left( {{x^2} - 2} \right)\] là:
Có bao nhiêu giá trị nguyên của m để đồ thị hàm số \[y = {x^3} - 12x + 1 - m\] cắt trục hoành tại 3 điểm phân biệt?
Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{\log _{\sqrt {ab} }}\left( {a{\mkern 1mu} \sqrt[3]{b}} \right) = 3.\] Tính \[{\log _{\sqrt {ab} }}\left( {b{\mkern 1mu} \sqrt[3]{a}} \right).\]
Giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên \[\left( {0; + \infty } \right)\] bằng:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]
Có bao nhiêu giá trị nguyên dương của m không vượt quá 2021 để phương trình \[{4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\] có nghiệm?
Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]
Biết rằng \[{\log _2}3 = a,{\mkern 1mu} {\mkern 1mu} {\log _2}5 = b.\] Tính \[{\log _{45}}4\] theo \[a,{\mkern 1mu} {\mkern 1mu} b.\]
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \[A\left( {1;{\mkern 1mu} {\mkern 1mu} 3; - 2} \right)\] và mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2x + y - 2z - 3 = 0.\] Khoảng cách từ điểm A đến mặt phẳng \[\left( P \right)\] bằng:
Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ.
Tính nguyên hàm \[\int {{{\tan }^2}2xdx.} \]
Số nghiệm nguyên thuộc đoạn \[\left[ { - 99;{\mkern 1mu} {\mkern 1mu} 100} \right]\] của bất phương trình \[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}}\] là:
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{{ - 2}}\] và mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} 2x - y + 2z - 3 = 0.\] Gọi α là góc giữa đường thẳng Δ và mặt phẳng (P). Khẳng định nào sau đây là đúng?
Cho cấp số cộng \[\left( {{u_n}} \right)\] thỏa mãn \[{u_1} + {u_{2020}} = 2,\] \[{u_{1001}} + {u_{1221}} = 1.\] Tính \[{u_1} + {u_2} + .... + {u_{2021}}.\]
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\] và điểm \[A\left( { - 1;{\mkern 1mu} {\mkern 1mu} 2;{\mkern 1mu} {\mkern 1mu} 0} \right).\] Khoảng cách từ điểm A đến đường thẳng Δ bằng:
Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Tìm nguyên hàm \[\int {\left( {2x - 1} \right)\ln xdx} \].
Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là:
Cho hàm số \[y = m{x^3} + m{x^2} - \left( {m + 1} \right)x + 1\]. Tìm tất cả các giá trị của m để hàm số nghịch biến trên R?
Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?
Cho số phức z thỏa mãn \[3z + i\left( {\bar z + 8} \right) = 0\]. Tổng phần thực và phần ảo của z bằng:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \[A\left( {1;0;2} \right)\], \[B\left( { - 1;1;3} \right)\], \[C\left( {3;2;0} \right)\] và mặt phẳng . Biết rằng điểm \[M\left( {a;b;c} \right)\] thuộc mặt phẳng (P) sao cho biểu thức \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất. Khi đó \[a + b + c\] bằng:
Tính đạo hàm của hàm số \[y = \ln \left( {\sqrt x + 1} \right)\].
Tính nguyên hàm \[\int {{x^2}{{\left( {2{x^3} - 1} \right)}^2}dx} \].
Phương trình \[{2^x} = {3^{{x^2}}}\] có bao nhiêu nghiệm thực?
Cho hàm số \[y = {x^3} - 3{x^2} + 2\]. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \[A\left( {1;0} \right)\]?
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
Tọa độ tâm đối xứng của đồ thị hàm số \[y = {x^3} - 3x + 2\] là:
Cho hàm số \[f\left( x \right)\] liên tục trên \[\mathbb{R}\] và thỏa mãn \[xf'\left( x \right) + \left( {x + 1} \right)f\left( x \right) = {e^{ - x}}\] với mọi \[x\]. Tính \[f'\left( 0 \right)\].
Trong không gian với hệ tọa độ \[Oxyz\], cho điểm \[A\left( {1; - 1; - 2} \right)\] và mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y - 3z + 4 = 0\]. Viết phương trình đường thẳng đi qua A và vuông góc với (P).
Có bao nhiêu giá trị thực của m để hàm số \[y = m{x^9} + \left( {{m^2} - 3m + 2} \right){x^6} + \left( {2{m^3} - {m^2} - m} \right){x^4} + m\] đồng biến trên \[\mathbb{R}\].
Cho hàm số \[f\left( x \right)\] liên tục trên \[\left( {0; + \infty } \right)\] và thỏa mãn với mọi \[x >0\]. Tính \[\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \].
Biết rằng đường thẳng \[y = 1 - 2x\] cắt đồ thị hàm số \[y = \frac{{x - 2}}{{x - 1}}\] tại hai điểm phân biệt A và B. Độ dài đoạn thẳng AB bằng:
Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABC} \right)\] thuộc miền trong tam giác ABC. Tính thể tích hình chóp \[S.ABC\].
Cho khối lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh đáy là \[2a\] và khoảng cách từ điểm A đến mặt phẳng \[\left( {A'BC} \right)\] bằng a. Tính thể tích của khối lăng trụ \[ABC.A'B'C'\].
Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \[3x - 2\] và đồ thị hàm số \[y = {x^2}\] quanh quanh trục \[Ox\].
Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].
Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn \[\left| {z - 1 + 3i} \right| = \left| {\bar z + 1 - i} \right|\].
Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\] bằng \[a\sqrt 6 \]. Tính diện tích mặt cầu ngoại tiếp hình chóp \[S.ABC\].