Đề kiểm tra giữa học kì 2 Toán 10 Cánh Diều - Đề 02 có đáp án
Vui lòng cài đặt đề thi trước khi làm bài
Nếu một công việc được hoàn thành bởi một trong ba hành động. Nếu hành động thứ nhất có m cách thực hiện, hành động thứ hai có n cách thực hiện, hành động thứ ba có k cách thực hiện (các cách thực hiện của ba hành động là khác nhau đôi một) thì số cách hoàn thành công việc đó là
Nếu một công việc được hoàn thành bởi ba hành động liên tiếp. Nếu hành động thứ nhất có m cách thực hiện, ứng với mỗi cách thực hiện hành động thứ nhất, có n cách thực hiện hành động thứ hai, ứng với mỗi cách thực hiện hành động thứ nhất và mỗi cách thực hiện hành động số hai, có k cách thực hiện hành động số ba thì số cách hoàn thành công việc đó là
Cho tập A = {0; 1; 3; 5; 7}. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số sao cho các chữ số đó đôi một khác nhau và là số chẵn.
Phương tiện bạn Khoa có thể chọn đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt được thể hiện qua sơ đồ cây sau:
Hỏi bạn Khoa có mấy cách chọn phương tiện đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt?
Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Mỗi chỉnh hợp chập k của n phần tử đã cho là
Số các hoán vị của 5 phần tử là
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
Có bao nhiêu cách xếp 5 người ngồi vào một dãy ghế gồm có 6 chiếc ghế, biết mỗi người ngồi vào một ghế.
Sắp xếp năm bạn học sinh Anh, Chánh, Châu, Hằng, Loan vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho bạn Châu luôn ngồi chính giữa là
Cho tập hợp H = {1; 3; 5; 7; 9; 11}. Một tổ hợp chập 3 của 6 phần tử của H là
Với n là số nguyên dương tùy ý lớn hơn 1, mệnh đề nào dưới đây đúng?
Một lớp có 40 học sinh gồm 25 nam và 15 nữ. Hỏi có bao nhiêu cách chọn ra một nhóm 3 học sinh trong đó có ít nhất một học sinh nữ?
Trong một hộp đựng 4 viên bi hồng và 3 viên bi tím. Lấy ngẫu nhiên ra 2 viên. Có bao nhiêu cách lấy được 2 viên bi cùng màu?
Cho biểu thức (a + b) n , với n = 4 thì khi khai triển ta được một biểu thức có số số hạng là
Trong các phát biểu sau, phát biểu nào đúng?
Số hạng không chứa x trong khai triển nhị thức Newton của (2x – 5) 5 là
T rong mặt phẳng tọa độ Oxy, c ho vectơ \(\overrightarrow a = - 2\overrightarrow i + 3\overrightarrow j \) . Tọa độ của vectơ \(\overrightarrow a \) là
Trong mặt phẳng tọa độ Oxy, cho M(3; – 6) và N(5; 2). Tọa độ trung điểm I của MN là
Trong mặt phẳng tọa độ Oxy, cho điểm H(1; 6). Tọa độ của vectơ \(\overrightarrow {OH} \) là
Tìm các số thực a và b để cặp vectơ sau bằng nhau \(\overrightarrow x = \left( {a + b; - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;\,4b} \right)\) .
Cho hình bình hành ABCD có A(– 1; – 2), B(3; 2), C(4; – 1). Tọa độ của đỉnh D là
Trong mặt phẳng tọa độ Oxy, cho A(2; 7) và B(– 2; 8). Độ dài đoạn thẳng AB là
Cho hai vectơ \(\overrightarrow x = \left( {3;\, - 4} \right)\) , \(\overrightarrow y = \left( { - 6;\,\,8} \right)\) . Khẳng định nào sau đây là đúng?
Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow a = \left( {4;\,\, - m} \right)\) và \(\overrightarrow b = \left( {2m + 6;\,\,1} \right)\) . Tập giá trị của m để hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương là
Cho tam giác ABC có A(1; 2), B(– 1; 1), C(5; – 1). Tính \(\overrightarrow {AB} \cdot \overrightarrow {AC} \) .
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: – x + 2y + 7 = 0. Vectơ pháp tuyến của đường thẳng d là
Phương trình tham số của đường thẳng ∆ đi qua điểm A(– 4; 2) và nhận \(\overrightarrow u = \left( {2;\,\, - 5} \right)\) làm vectơ chỉ phương là
Phương trình tổng quát của đường thẳng d đi qua điểm A(1; – 3) và nhận \(\overrightarrow n = \left( { - 2;\,\,7} \right)\) làm vectơ pháp tuyến là
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Cho đường thẳng ∆ đi qua điểm A(4; – 5) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\,2} \right)\) . Phương trình tham số của đường thẳng ∆ là
Khoảng cách từ điểm M(5; – 1) đến đường thẳng d: 3x + 2y + 13 = 0 là
Góc giữa hai đường thẳng a: 6x – 5y + 15 = 0 và b: \(\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) bằng
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(3; 1) và C(5; 4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?
Tọa độ giao điểm của hai đường thẳng x – 3y – 6 = 0 và 3x + 4y – 1 = 0 là
Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 8 - \left( {m + 1} \right)t\\y = 10 + t\end{array} \right.\) và d 2 : mx + 2y – 14 = 0. Giá trị của m để hai đường thẳng trên song song với nhau là