Bộ đề thi Toán THPT Quốc gia năm 2022 có lời giải (Đề 24)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?

Câu 2 :

Cho cấp số cộng (u n ) có số hạng tổng quát là u n = 3n-2. Tìm công sai d của cấp số cộng.

Câu 3 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau đây?

Câu 4 :

Cho hàm số y = f(x) có bảng biến thiên như hình dưới:

Giá trị cực đại của hàm số đã cho là:

Câu 5 :

Cho hàm số y = x 4 -x 3 +3. Khẳng định nào sau đây là đúng?

Câu 6 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

Câu 7 :

Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Câu 8 :

Số giao điểm của đồ thị hàm số y = x 3 -2x 2 +x-12 và trục Ox là

Câu 9 :

Cho a, b là các số thực dương bất kỳ. Mệnh đề nào sau đây sai ?

Câu 10 :

Tính đạo hàm của hàm số f(x) = e 2x-3

Câu 11 :

Rút gọn P = a 2 . 1 a 2 1 , a > 0.

Câu 12 :

Tổng các nghiệm của phương trình 3 x 4 - 3 x 2 = 81 bằng

Câu 13 :

Tập nghiệm của phương trình log 3 x +log 3 (x+2) = 2 là

Câu 14 :

Cho hàm số f x = 2 x + 1 x . Trong các khẳng định sau, khẳng định nào đúng ?

Câu 15 :

Cho hàm số f(x) = sin x cos x . Trong các khẳng định sau, khẳng định nào đúng ?

Câu 16 :

Nếu 1 2 f x d x = 3 6 12 f x 3 d x = 2 thì 1 4 f x d x bằng

Câu 17 :

Tích phân 1 e ln x d x bằng

Câu 18 :

Tổng phần thực và phần ảo của số phức liên hợp của z=2-3i là

Câu 19 :

Cho hai số phức z 1 = 2 i z 2 = 7 3 i . Tìm số phức z = z 1 z 2 .

Câu 20 :

Trên mặt phẳng tọa độ, cho số phức (1+ i )z = 3- i , điểm biểu diễn số phức z là

Câu 21 :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA=2a. Thể tích khối chóp S.ABCD bằng

Câu 22 :

Thể tích của một khối hộp chữ nhật có các cạnh 2cm, 4cm, 7cm là

Câu 23 :

Cho khối nón có bán kính đáy bằng a và đường cao 2a. Thể tích của khối nón đã cho bằng

Câu 24 :

Cho hình trụ có độ dài đường sinh bằng 6, diện tích xung quanh bằng 48π. Bán kính hình tròn đáy của hình trụ đó bằng

Câu 25 :

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;0), B(0;3;4). Độ dài đoạn thẳng AB là:

Câu 26 :

Trong không gian Oxyz, cho hai điểm A(-2;1;1), B(0;-1;1). Phương trình mặt cầu đường kính AB là:

Câu 27 :

Cho biết phương trình mặt phẳng P : a x + b y + c z 13 = 0 đi qua 3 điểm A 1 ; 1 ; 2 , B 2 ; 1 ; 0 , C 0 ; 1 ; 3 . Khi đó a+b+c bằng

Câu 28 :

Trong không gian Oxyz cho ba điểm A(1;-2;0),B(2;-1;3),C(0;-1;1). Đường trung tuyến AM của tam giác ABC có phương trình là

Câu 29 :

Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí và 2 quyển sách Hóa, lấy ngẫu nhiên 3 quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán.

Câu 30 :

Hàm số nào trong các hàm số sau đây nghịch biến trên R

Câu 31 :

Hàm số y = 1 3 x 3 5 2 x 2 + 6 x + 1 đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn [1;3] lần lượt tại hai điểm x 1 và x 2 . Khi đó x 1 +x 2 bằng

Câu 32 :

Tìm tập nghiệm S của bất phương trình 1 2 x 2 + 3 x < 1 4 .

Câu 33 :

Cho 1 2 f x d x = 2 1 2 g x d x = 1 . Tính I = 1 2 x + 2 f x 3 g x d x .

Câu 34 :

Cho số phức z = 1+2 i . Tìm tổng phần thực và phần ảo của số phức w = 2 z + z ¯ .

Câu 35 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = 2 , A D = 5 . Cạnh bên S A = 3 và vuông góc với mặt phẳng đáy (tham khảo hình bên). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng

Câu 36 :

Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh bằng 2. Biết A’A=A’B=A’C=2. Khoảng cách từ A’ đến mặt phẳng (ABC) bằng

Câu 37 :

Trong không gian Oxyz, mặt cầu có tâm I(1;0;2) và tiếp xúc với mặt phẳng (Oyz) có phương trình là:

Câu 38 :

Trong không gian Oxyz, đường thẳng đi qua điểm M(1;3;-2) và song song với đường thẳng d : x 2 2 = y 1 = z + 1 3 có phương trình tham số là:

Câu 39 :

Cho hàm số f(x), đồ thị hàm số y = f’(x) là đường cong trong hình bên. Giá trị lớn nhất của hàm số g x = f 2 x 1 + 2 x trên đoạn [0;2] bằng

Câu 40 :

Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 25 số nguyên x thỏa mãn 2 x + 1 1 4 y 2 x 0 ?

Câu 41 :

Cho hàm số f(x) liên tục trên R thỏa mãn f x = x + m , x 0 e 2 x , x < 0 ( m là hằng số). Biết 1 2 f x d x = a + b e 2 trong đó a, b là các số hữu tỉ. Tính a+b.

Câu 42 :

Có bao nhiêu số phức z thỏa mãn z 1 z i = z 3 i z + i = 1 ?

Câu 43 :

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc B C A ^ = 30 ° , S O A B C D S O = 3 a 4 . Khi đó thể tích của khối chóp là

Câu 44 :

Từ một tấm thép phẳng hình chữ nhật, người ta muốn làm một chiếc thùng đựng dầu hình trụ bằng cách cắt ra hai hình tròn bằng nhau và một hình chữ nhật (phần tô đậm) sau đó hàn kín lại, như trong hình vẽ dưới đây. Hai hình tròn làm hai mặt đáy, hình chữ nhật làm thành mặt xung quanh của thùng đựng dầu (vừa đủ). Biết rằng đường tròn đáy ngoại tiếp một tam giác có kích thước là 50cm, 70cm, 80cm (các mối ghép nối khi gò hàn chiếm diện tích không đáng kể. Lấy π=3,14). Diện tích của tấm thép hình chữ nhật ban đầu gần nhất với số liệu nào sau đây?

Câu 45 :

Trong không gian Oxyz, cho 2 đường thẳng d : x + 1 1 = y + 1 2 = z 1 1 , d ' : x + 1 2 = y 3 1 = z 1 2 và mặt phẳng P : 2 x + y + z 3 = 0 . Biết rằng đường thẳng Δ song song với mặt phẳng (P), cắt các đường thẳng d, d’ lần lượt tại M, N sao cho M N = 11 (điểm M có tọa độ ngyên). Phương trình của đường thẳng Δ

Câu 46 :

Cho f(x) là hàm số bậc bốn thỏa mãn f 0 = 1 ln 2 . Hàm số f’(x) có bảng biến thiên như sau:

Hàm số g x = f x 2 x 2 + 2 x 2 ln 2 có bao nhiêu điểm cực trị?

Câu 47 :

Cho các số thực z, y, z thỏa mãn log 3 2 x 2 + y 2 = log 7 x 3 + 2 y 3 = log z . Có bao giá trị nguyên của z để có đúng hai cặp (x;y) thỏa mãn đẳng thức trên.

Câu 48 :

Cho hàm số y = x 4 -3x 2 +m có đồ thị (C m ), với m là tham số thực. Giả sử (C m ) cắt trục Ox tại bốn điểm phân biệt như hình vẽ

Gọi S 1 , S 2 , S 3 là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để S 1 +S 3 =S 2

Câu 49 :

Xét hai số phức z 1 ; z 2 thỏa mãn z 1 = 1 ; z 2 = 4 z 1 z 2 = 5 . Giá trị lớn nhất của z 1 + 2 z 2 7 i bằng

Câu 50 :

Trong không gian Oxyz, cho hai điểm A(1;3;0), B(-3;1;4) và đường thẳng Δ : x 2 1 = y + 1 1 = z 2 3 . Xét khối nón (N) có đỉnh có tọa độ nguyên thuộc đường thẳng Δ và ngoại tiếp mặt cầu đường kính AB. Khi (N) có thể tích nhỏ nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng a x + b y + c z + 1 = 0 . Giá trị a + b + c bằng