Bộ đề thi thử thpt quốc gia môn Toán cực hay (đề 18)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Một cái phễu dạng hình nón có chiều cao bằng 20cm . Người ta đổ nước vào cái phễu sao cho chiều cao của lượng nước trong phễu bằng 5,09cm chiều cao của phễu. Hỏi, nếu bịt kín miệng phễu và úp phễu xuống thì chiều cao của nước trong phễu bằng bao nhiêu ?

Câu 2 :

Cho hàm số y=f(x) liên tục trên ℝ và có bảng xét dấu f’(x) như sau

Hàm số y=f(x) có bao nhiêu điểm cực trị?

Câu 3 :

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P):x-4y+3z-2=0. Một vectơ pháp tuyến của mặt phẳng (P)

Câu 4 :

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

Câu 5 :

Tính thể tích V của khối nón có bán kính đáy bằng 3 và chiều cao bằng 6.

Câu 6 :

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a,SA vuông góc với mặt đáy và SA=3a. Gọi M, N lần lượt là trung điểm của AB, SC.Khoảng cách giữa hai đường thẳng CM và AN bằng

Câu 7 :

Cho hình phẳng (H) giới hạn bởi parabol P : y = x 2 , trục hoành và tiếp tuyến của (P) tại điểm M(2;4). Tính thể tích V của khối tròn xoay tạo thành khi quay hình (H) xung quanh trục hoành .

Câu 8 :

Cho hai hàm số y=f(x),y=g(x) liên tục trên đoạn [a;b] và nhận giá trị bất kỳ. Diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số đó và các đường thẳng x=a,x=b được tính theo công thức

Câu 9 :

Trong không gian với hệ tọa độ O ; i ; j ; k , cho hai vectơ a = 2 ; - 1 ; 4 b = i - 3 k . Tính a . b

Câu 10 :

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-4z=0, đường thẳng d : x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u = a ; b ; 1 là một vectơ chỉ phương của đường thẳng ∆. Tính a+2b.

Câu 11 :

Biết 1 5 ln x x 2 d x = a ln 5 + b với a,b là các số hữu tỉ. Tính tích a.b .

Câu 12 :

Cho hàm số y = x 3 + 3 x 2 - 2 x - 3 có đồ thị (C) . Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến có hệ số góc nhỏ nhất.

Câu 13 :

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB=2a, BC=a. Biết thể tích khối lăng trụ ABC.A’B’C’ bằng a 3 , chiều cao của hình lăng trụ đã cho bằng

Câu 14 :

Có bao nhiêu giá trị nguyên thuộc khoảng (-9;9) của tham số m để bất phương trình 3 log x 2 log m x - x 2 - 1 - x 1 - x có nghiệm thực?

Câu 15 :

Tính tổng S của cấp số nhân lùi vô hạn u n có số hạng đầu u 1 = 6 và công bội q=-1/2.

Câu 16 :

Một kỹ sư mới ra trường làm việc với mức lương khởi điểm là 5.000.000 đồng/tháng. Cứ sau 9 tháng làm việc, mức lương của kỹ sư đó lại được tăng thêm 10%. Hỏi sau 4 năm làm việc tổng số tiền lương kỹ sư đó nhận được là bao nhiêu?

Câu 17 :

Cho hàm số y=f(x) có đạo hàm liên tục trên và f(1)=1,f(-1)=-1/3 Đặt g x = f 2 x - 4 f x Đồ thị của hàm số y=f‘(x) là đường cong ở hình bên. Mệnh đề nào sau đây đúng?

Câu 18 :

Số chỉnh hợp chập 6 của một tập hợp có 9 phần tử là:

Câu 19 :

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Đường thẳng nào dưới đây là giao tuyến của hai mặt phẳng và?

Câu 20 :

Tìm tập nghiệm S của bất phương trình log 1 2 x - 3 log 1 2 4

Câu 21 :

Cho hàm số y=f(x) liên tục trên và có bảng biến thiên như sau

Mệnh đề nào sau đây đúng?

Câu 22 :

Cho số phức z thỏa mãn 3 i z - z - = 1 + 5 i . Môđun của z bằng

Câu 23 :

Tính đạo hàm của hàm số y = log 4 x 2 + 1

Câu 24 :

Cho hàm số y=f(x) liên tục trên đoạn [0;π/3]. Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = 0 π 3 f x d x

Câu 25 :

P hương trình tham số của đường thẳng đi qua điểm M(3;-1;2) và có vectơ chỉ phương u = 4 ; 5 - 7

Câu 26 :

Cho số thực a thỏa mãn a 2 > a 3 . Mệnh đề nào sau đây đúng?

Câu 27 :

Cho a là số thực dương tùy ý. Mệnh đề nào sau đây đúng?

Câu 28 :

Cho hàm số y=f(x) có bảng biến thiên như sau

Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

Câu 29 :

Cho hàm số y=f(x) có đồ thị trong hình bên. Phương trình f(x)=1 có bao nhiêu nghiệm thực phân biệt nhỏ hơn 2?

Câu 30 :

Phần thực; phần ảo của số phức z = - 3 + 4 i theo thứ tự bằng

Câu 31 :

Cho hàm số y = x - x + 1 có đồ thị, đường thẳng (d):y=mx-m-1 và điểm A(-1;0) Biết đường thẳng d cắt đồ thị tại hai điểm phân biệt M, N mà A M 2 + A N 2 đạt giá trị nhỏ nhất. Mệnh đề nào dưới đây đúng?

Câu 32 :

Tính thể tích V của khối hộp chữ nhật có đáy là hình vuông cạnh bằng 6 và chiều cao bằng 5.

Câu 33 :

Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam và 5 học sinh nữ thành một hàng ngang. Xác suất để trong 10 học sinh trên không có hai học sinh cùng giới tính đứng cạnh nhau, đồng thời Hoàng và Lan không đứng cạnh nhau bằng

Câu 34 :

Tìm 1 x 2 d x

Câu 35 :

Đường tiệm cận đứng của đồ thị hàm số y = 2 x - 3 2 x + 1 là đường thẳng

Câu 36 :

Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1;1;0),B(0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm O,A và cùng cách B một khoảng bằng 3 . Vectơ nào trong các vectơ dưới đây là một vectơ pháp tuyến của một trong hai mặt phẳng đó?

Câu 37 :

Trong không gian với hệ tọa độ Oxyz , cho mặt cầu S : x + 3 2 + y 2 + z - 1 2 = 10 . Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng 3 ?

Câu 38 :

Gọi z 1 ; z 2 là hai nghiệm phức của phương trình z 2 + 3 z + 9 = 0 , trong đó z 1 có phần ảo dương . Phần thực của số phức w = 2017 z 1 - 2018 z 2 - bằng

Câu 39 :

Bất phương trình 3 x 2 + 3 . 2 x x . 2 x + 1 - 1 có bao nhiêu nghiệm nguyên thuộc khoảng (-10;10) ?

Câu 40 :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Thể tích khối chóp S.BDM bằng

Câu 41 :

Cho số phức z có m ôđun bằng 8 . Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w=2z+4-3i là đường tròn có tâm I(a;b) , bán kính R . Tổng a+b+R bằng

Câu 42 :

Tìm giá trị dương của tham số m để hàm số y = m 2 x - 1 x + 1 có giá trị nhỏ nhất trên đoạn [1;2] bằng 3.

Câu 43 :

Cho số phức z thỏa mãn |z|≤ 2. Giá trị nhỏ nhất của biểu thức P = 2 z + 1 + 2 z - 1 + z - z - - 4 i bằng

Câu 44 :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và có thể tích bằng V . Gọi M,N,P,Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA. Thể tích khối chóp O.MNPQ bằng

Câu 45 :

Tìm tất cả các giá trị thực của tham số m để tập nghiệm của bất phương trình log 2 2 x - 2 m + 5 log 2 x + m 2 + 5 m + 4 < 0 chứa nửa khoảng [2;4).

Câu 46 :

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2y-z+3=0 và điểm A(2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy,Oz lần lượt tại các điểm B,C khác O. Thể tích khối tứ diện OABC bằng

Câu 47 :

Cho hàm số y = 2 x + 1 x - m với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (2;+∞) ?

Câu 48 :

Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).

Câu 49 :

Cho 0 1 f x - 2 g x d x = 3 , 0 1 f x d x = - 1 Tính I = 0 1 g x d x

Câu 50 :

Biểu thức A = a 1 3 a được viết lại dưới dạng lũy thừa với số mũ hữu tỷ là