Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P4)
Vui lòng cài đặt đề thi trước khi làm bài
Cho A là giao điểm của đường thẳng và mặt phẳng Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và SA= .Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC.
Cho hình chóp tam giác đều S.ABC có AB = a, cạnh bên SA tạo với đáy một góc .Một hình nón có đỉnh là S, đáy là hình tròn nội tiếp tam giác ABC. Tính diện tích xung quanh của hình nón đã cho.
Viết phương trình mặt câu (S) có tâm I nằm trên tia Oy, bán kính R = 4 và tiếp xúc với mặt phẳng (Oxz).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, .Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC.
Một hình trụ có bán kính đáy bằng R và thiết diện qua trục là hình vuông. Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.
Cho mặt cầu và mặt phẳng .Mặt phẳng cắt mặt cầu (S) theo một đường tròn (C). Tìm tọa độ tâm J và bán kính r của đường tròn (C).
Cho mặt phẳng .Viết phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với (P).
Cho hình chóp S.ABC, G là trọng tâm ABC. Khi quay các cạnh của hình chóp S.ABC xung quanh trục SG, hỏi có tất cả bao nhiêu hình nón được tạo thành?
Cho hình nón tròn xoay có đường cao h bán kính đáy r = 3. Mặt phẳng (P) qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 4. Gọi O là tâm của hình tròn đáy. Tính khoảng cách d từ điểm O đến mặt phẳng (P).
Cho hình trụ có chiều cao h = 5, bán kính đáy r = 2. Một đoạn thẳng có chiều dài bằng 6 và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách d từ đoạn thẳng đó đến trục của hình trụ.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy và .Thể tích V của khối cầu ngoại tiếp hình chóp đã cho bằng
Mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với 3 mặt phẳng .Bán kính mặt cầu (S) là
Cho hình chóp tam giác đều S.ABC có AB = 1, SA = 2.Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
Tính diện tích S của mặt cầu có bán kính R = 2
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B. Biết AB=BC= và khoảng cách từ A đến mặt phẳng (SBC) bằng .Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng
Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối nón có chiều cao h và bán kính r thay đổi, nối tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích khối nón lớn nhất
Cho hình trụ T. Một hình nón N có đáy là một đáy của hình trụ, đỉnh S của hình nón là tâm của đáy còn lại. Biết tỉ số diện tích xung quanh của hình nón và diện tích xung quanh của hình trụ bằng .Gọi là góc ở đỉnh của hình nón đã cho. Tính cos
Cho hình tròn tâm S, bán kính R = 2. Cắt bỏ hình tròn rồi dán lại để tạo ra mặt xung quanh của một hình nón N. Tính diện tích toàn phần của hình nón N.
Cho hình nón có chiều cao h. Một hình trụ nối tiếp bên trong hình nón có chiều cao x thay đổi. Tính chiều cao x của hình trụ theo h sao cho thể tích của khối trụ sinh bởi hình trụ đó là lớn nhất
Cắt một khối trụ T bằng một mặt phẳng đi qua trục của nó, ta được một hình vuông có diện tích bằng 9. Khẳng định nào sau đây là sai?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 1, AD = 2. cạnh bên SA vuông góc với đáy và SA . Sin của góc giữa đường thẳng SB và mặt phẳng (SAC) bằng
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng và mặt phẳng : x+3y+z+1=0 .Khẳng định nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1),C(-2;0;1) và mặt phẳng .Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1;1;2), B(0;1;1),C(1;0;4) và đường thẳng .Tọa độ giao điểm của mặt phẳng (ABC) và đường thẳng d là
Một khối nón có thể tích .Biết rằng tỉ số giữa đường cao và đường sinh của khối nón bằng . Tính diện tích xung quanh của khối nón đã cho
Cho hình chóp SABCD , có đáy ABCD là hình vuông cạnh bằng 1. Các mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy, cạnh bên SA .Tính thể tích V của khối cầu ngoại tiếp hình chóp SABCD
Trong các phương trình sau, phương trình nào là phương trình của mặt cầu?
Cho hình chóp SABC có AB = a cạnh bên SA tạo với đáy một góc . Một hình nón có đỉnh là S , đáy là hình tròn ngoại tiếp tam giác ABC . Tính diện tích xung quang của hình nón đã cho.
Một hình trụ có chiều cao h = 2 bán kính đáy r = 3.Một mặt phẳng (P) không vuông góc với đáy của hình trụ, lần lượt cắt hai đáy theo các đoạn giao tuyến AB và CD sao cho tứ giác ABCD là hình vuông. Tính diện tích S của hình vuông ABCD.