60 câu trắc nghiệm: Hệ tọa độ trong không gian có đáp án (P2)
Vui lòng cài đặt đề thi trước khi làm bài
Trong không gian Oxyz, cho hai vectơ = (1; -2; 2), = (-2; m - 3; m). Với những giá trị nào của m thì hai vectơ và có độ dài bằng nhau?
Trong không gian Oxyz, cho điểm G(1;2;3) là trọng tâm của tam giác ABC trong đó A thuộc trục Ox, B thuộc trục Oy, C thuộc trục Oz. Tọa độ các điểm A, B, C là:
Trong không gian Oxyz, ba điểm nào dưới đây lập thành ba đỉnh của một tam giác?
Cho hai vectơ thay đổi nhưng luôn thỏa mãn
Giá trị lớn nhất của
Trong không gian cho hai điểm A(x; y; z), B(m, n, p) thay đổi nhưng luôn thỏa mãn các điều kiện = 4, = 9. Vectơ có độ dài nhỏ nhất là:
Trong không gian Oxyz, cho hình bình hành ABCD với A(0;1;-2), B(3;-2;1), D(1;4;2). Tọa độ của điểm C là:
Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' có A(0;0;0), B(1;2;0), D(2;-1;0), A’(5;2;3). Tọa độ của điểm C’ là:
Trong không gian Oxyz, cho vectơ = (1; -2; 3). Tìm tọa độ của vectơ biết rằng vectơ ngược hướng với vectơ
và | | = 2| |
Trong không gian Oxyz, cho vectơ = (-1; -2; 3). Tìm tọa độ của vectơ = (2; y; z) biết rằng vectơ cùng phương với vectơ
Trong không gian Oxyz, cho vectơ = (m; m + 3; 3 - 2m). Với giá trị nào của m thì vectơ có độ dài nhỏ nhất
Trong không gian Oxyz, cho hai vectơ = (3; 4; 0), = (2; -1; 2) . Tích vô hướng của hai vectơ và là:
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
= 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
- 2x + 4y + 4z + 5 = 0
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
Phương trình nào dưới đây là phương trình của một mặt cầu?
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
+ 6x - 8y + 15z - 3 = 0
Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
Trong không gian Oxyz, cho mặt cầu (S) có đường kính AB với A(-2;-4;3), B(4;2;0). Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-2;-3) và đi qua điểm M(-1;0;-2). Phương trình của mặt cầu (S) là:
Cho (S) là mặt cầu có tâm I(1;2;4) và đi qua điểm M(-1;4;3). Khẳng định nào dưới đây sai?
Cho mặt cầu (S) có tâm I(1;2;3), bán kính R = 4. Khẳng định nào sau đây là đúng?
Cho mặt cầu (S) có tâm I(1;2;-1) và bán kính R=3. Phương trình mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ là:
Cho mặt cầu (S) có phương trình: - 2x + 4y - 6z - 2 = 0 . Điểm M(m; -2; 3) nằm trong mặt cầu khi và chỉ khi:
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(0;0;1), bán kính R=5. Mặt phẳng (P): 4x - 4y + z + m = 0 cắt mặt cầu (S) theo một đường tròn có bán kính bằng 5. Khi đó m bằng:
Trong không gian Oxyz, cho mặt cầu (S) đi qua bốn điểm O, A(4;0;0), B(0;-2;0), C(0;0;2). Phương trình của mặt cầu (S) là:
Trong không gian Oxyz, cho mặt cầu (S) đi qua bốn điểm O, A(-4;0;0), B(0;2;0), C(0;0;4). Phương trình của mặt cầu (S) là:
Vị trí tương đối của hai mặt cầu (S) có tâm I(1;1;1), bán kính R = 1 và mặt cầu (S’) có tâm I'(3;3;3), bán kính R’=1 là:
Vị trí tương đối của hai mặt cầu: + 2x - 2y - 2z - 7 = 0 và + 2x + 2y + 4z + 5 = 0 là:
Trong không gian Oxyz, cho A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức = 30 là một mặt cầu (S). Tìm tọa độ tâm I và bán kính R của (S).
Trong không gian Oxyz, cho hai điểm A(0;2;-4), B(-3;5;2). Tìm tọa độ điểm M sao cho biểu thức đạt giá trị nhỏ nhất.
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: = 4
Cho ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện góc AMB = 90 o . Diện tích tam giác AMB có giá trị lớn nhất là:
Trong không gian Oxyz, cho hai mặt cầu (S) và (S’) có tâm lần lượt là I(-1;2;3), I’(3;-2;1) và có bán kính lần lượt là 4 và 2. Cho điểm M di động trên mặt cầu (S), N di động trên mặt cầu (S’). Khi đó giá trị lớn nhất của đoạn thẳng MN bằng: