30 đề thi thử Toán thpt quốc gia cực hay (Đề số 3)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Hàm số nào dưới đây có tập xác định là khoảng 0 ; + ?

Câu 2 :

Tích vô hướng của hai véc tơ a ( - 2 ; 2 ; 5 ) , b ( 0 ; 1 ; 2 )

Câu 3 :

Họ nguyên hàm của hàm số f ( x ) = x - sin 2 x

Câu 4 :

Tìm nghiệm của phương trình log 3 ( x - 9 ) = 3 .

Câu 5 :

Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 1 2 = z - 2 - 3 và cho mặt phẳng ( P ) : x + y + z - 4 = 0 . Khẳng định nào dưới đây là khẳng định đúng?

Câu 6 :

Mặt phẳng nào dưới đây cắt mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 4 z - 3 = 0 theo thiết diện là một đường tròn?

Câu 7 :

Giá trị cực tiểu của hàm số y = - 1 3 x 3 + x - 1

Câu 8 :

Thể tích của khối lập phương có cạnh bằng 2 là

Câu 9 :

Hàm số y = - x 3 + 3 x - 2 nghịch biến trên các khoảng nào dưới đây?

Câu 10 :

Mệnh đề nào sau đây sai?

Câu 11 :

Cho số phức z = 2-3i. Điểm biểu diễn số phức liên hợp của z là

Câu 12 :

Cho hình lập phương ABCD. A ' B ' C ' D ; cạnh bằng a. Gọi O là giao điểm của AC và BD. Thể tích của tứ diện O A ' B C bằng

Câu 13 :

Trong không gian Oxyz cho điểm M(1;2;3). Phương trình mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tại A, B, C sao cho M là trong tâm của tam giác ABC là

Câu 14 :

Trong không gian với hệ tọa độ Oxyz. Phương trình mặt phẳng đi qua 3 điểm A(-3;0;0), B(0;4;0), C(0;0;-2) là

Câu 15 :

Biết rằng đường thẳng y = 2x -3 cắt đồ thị hàm số y = x 3 + x 2 + 2 x - 3 tại hai điểm phân biệt A và B, biết điểm B có hoành độ âm. Hoành độ của điểm B bằng

Câu 16 :

Cho số thực x thỏa mãn log x = 1 2 log 3 a - 2 log b + 3 log c (a,b,c là các số thực dương). Hãy biểu diễn x theo a, b, c.

Câu 17 :

Thể tích V của khối hộp chữ nhật ABCD. A ' B ' C ' D ' biết A B = a ; A D = 2 a ; A C ' = a 14

Câu 18 :

Cho lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng b. Thể tích của khối cầu đi qua các đỉnh của lăng trụ bằng

Câu 19 :

Số các đường tiệm cận đứng của đồ thị hàm số y = x + 3 - 2 x 2 - 1

Câu 20 :

Một kĩ sư được nhận lương khởi điểm là 8.000.000 đồng/tháng. Cứ sau 2 năm lương mỗi tháng của kĩ sư đó được tăng thêm 10% so với mức lương hiện tại. Tính tổng số tiền T (đồng) kĩ sư đó nhận được sau 6 năm làm việc.

Câu 21 :

Cho tứ diện ABCD có A B = a , A C = a 2 , A D = a 3 , các tam giác ABC, ACD, ABD là các tam giác vuông tại đỉnh A. Khoảng cách d từ điểm A đến mặt phẳng (BCD) là

Câu 22 :

Để đồ thị hàm số y = - x 4 - ( m - 3 ) x + 2 m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là

Câu 23 :

Nếu - 2 0 4 - e - π 2 d x = a + 2 b e thì giá trị của a + 2b là

Câu 24 :

Cho số phức z thỏa mãn z = 1 + i 1 - i 2019 . Tính z 4

Câu 25 :

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;a;1) và mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 y + 4 z - 9 = 0 . Tập các giá trị của a để điểm A nằm trong khối cầu là

Câu 26 :

Cho điểm M(2;1;0) và đường thẳng Δ : x - 1 2 = y + 1 1 = z - 1 . Gọi d là đường thẳng đi qua M, cắt và vuông góc với . Đường thẳng d có một VTCP là

Câu 27 :

Một hộp đựng Chocolate bằng kim loại có hình dạng lúc mở nắp như hình vẽ dưới đây. Một phần tư thể tích phía trên hộp được rải một lớp bơ sữa ngọt, phần còn lại phía dưới chứa đầy chocolate nguyên chất. Với kích thước như hình vẽ, gọi x = x 0 là giá trị làm cho hộp kim loại có thể tích lớn nhất, khi đó thể tích chocolate nguyên chất có giá trị V 0 bằng

Câu 28 :

Phương trình mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng ( P ) : x + y - z - 2 = 0 , ( Q ) : x - y + z - 1 = 0

Câu 29 :

Bạn An cần mua một chiếc gương đường viền là Parabol bậc 2 (xem hình vẽ). Biết rằng khoảng cách đoạn AB = 60cm, OH = 30cm. Diện tích của chiếc gương bạn An mua là:

Câu 30 :

Trong mặt phẳng tọa độ Oxy, cho điểm M, N, P lần lượt là điểm biểu diễn của các số phức 2 + 3 i , 1 - 2 i , - 3 + i . Tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành là

Câu 31 :

Nếu I = π 4 π 2 sin x - cos x 1 + sin 2 x d x = a b ln c , ( a , b , c Z ) thì a + 2b + 3c là

Câu 32 :

Đường thẳng x = k cắt đồ thị hàm số y = log 5 x và đồ thị hàm số y = log 3 ( x + 4 ) . Khoảng cách giữa các giao điểm là 1/2. Biết k = a + b , trong đó a, b là các số nguyên. Khi đó tổng a + b bằng

Câu 33 :

Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác gốc tọa độ. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.

Câu 34 :

Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự z 1 , z 2 khác 0 và thỏa mãn đẳng thức z 1 2 + z 2 2 = z 1 z 2 . . Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ). Chọn phương án đúng và đầy đủ nhất

Câu 35 :

Cho hình chóp S.ABCD có SA vuông góc với đáy; S A = a 6 . Đáy ABCD là hình thang vuông tại A và B, A B = B C = 1 2 A D = a . Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ECD

Câu 36 :

Với giá trị thực nào của tham số m thì đường thẳng y = 2x + m cắt đồ thị hàm số y = x + 3 x + 1 tại hai điểm phân biệt M, N sao cho MN ngắn nhất?

Câu 37 :

Cho số phức z thỏa mãn điều kiện z - 3 + 4 i 2 . Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích bằng

Câu 38 :

Cho hàm số y = x 3 - 3 4 x 2 - 3 2 x có đồ thị như vẽ bên. Tất cả các giá trị thực của tham số m sao cho phương trình 4 x 3 - 3 x 2 - 6 x = m 2 - 6 m có đúng ba nghiệm phân biệt là

Câu 39 :

Trong không gian Oxyz, cho d 1 : x - 2 1 = y - 1 - 1 = z 2 , d 2 : x = 2 - t y = 3 z = t . Phương trình mặt phẳng (P) sao cho d 1 , d 2 nằm về hai phía (P) và (P) cách đều d 1 , d 2

Câu 40 :

Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P):x - 2y + 2z - 5 = 0. Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u = ( 1 ; b ; c ) khi đó b c bằng

Câu 41 :

Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = - ( x - 10 ) ( x - 11 ) 2 ( x - 12 ) 2019 . Khẳng định nào dưới đây đúng ?

Câu 42 :

Gọi S là tập tất cả các giá trị của tham số m để đường thẳng d : y = x + 1 cắt đồ thị hàm số y = 4 x - m 2 x - 1 tại đúng một điểm. Tích các phần tử của S bằng

Câu 43 :

Kết quả (b; c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai x 2 + b x + c = 0 . Xác suất để phương trình bậc hai đó vô nghiệm là

Câu 44 :

Trên cánh đồng có 2 con bò được cột vào 2 cây cọc khác nhau. Biết khoảng cách giữa hai cọc là 4 mét, còn 2 sợi dây cột 2 con bò dài 3 mét và 2 mét. Tính phần diện tích mặt cỏ lớn nhất mà 2 con bò có thể ăn chung (lấy giá trị gần đúng nhất).

Câu 45 :

Cho hàm số y = f(x) liên tục trên R, có đồ thị như hình vẽ. Các giá trị của tham số m để phương trình 4 m 3 + m 2 f 2 ( x ) + 5 = f 2 ( x ) + 3 có ba nghiệm phân biệt là

Câu 46 :

Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùn rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đon vị lít) là bao nhiêu?

Câu 47 :

Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1;2;-1), B(0;4;0), mặt phẳng (P) có phương trình 2 x - y - 2 z + 2017 = 0 . Mặt phẳng (Q) đi qua hai điểm A, B và tạo với mặt phẳng (P) một góc nhỏ nhất. (Q) có một véc tơ pháp tuyến là n ( Q ) = ( 1 ; a ; b ) , khi đó a + b bằng

Câu 48 :

Cho hàm số y = x 3 - 3 m x 2 + 2 ( m 2 - 1 ) x - m 3 - m (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5

Câu 49 :

Cho hình chóp .S ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng 30 0 Biết AB = 5; AC = 8; BC = 7, khoảng cách từ A đến mặt phẳng (SBC) bằng

Câu 50 :

Cho hàm số f(x) có đạo hàm trên R thỏa mãn f ' ( x ) - 2018 f ( x ) = 2018 . 2017 . x 2017 . e 2018 x với mọi x R ; f ( 0 ) = 2018 . Giá trị của f(1) là