30 đề thi thử thpt năm 2020 môn Toán cực hay có lời giải chi tiết (đề số 24)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Cho log 3 a + 1 = 3 . Tính 3 log 9 a - 1

Câu 2 :

Tập nghiệm của phương trình 2 cos 2 x + 1 = 0

Câu 3 :

Gọi x 1 , x 2 là hai nghiệm nguyên dương của bất phương trình log 2 1 + x < 2 . Tính giá trị của biểu thức P = x 1 + x 2

Câu 4 :

Điểm biểu diễn của số phức z là M(1;2). Tìm tọa độ điểm biểu diễn của số phức w = z - 2 z ¯

Câu 5 :

Tìm nguyên hàm F(x) của hàm số f x = e 2 x biết F 0 = 1

Câu 6 :

Tính l i m 8 n - 1 4 n 2 + n + 1

Câu 7 :

Cho m là một số thực. Số nghiệm của phương trình 2 x 4 = m 2 - m + 2

Câu 8 :

Với cách biến đổi u = 4 x + 5 thì tích phân - 1 1 x 4 x + 5 d x trở thành

Câu 9 :

Cho n là số nguyên dương sao cho tổng các hệ số trong khai triển của x + 1 n bằng 1024. Hệ số của x 8 trong khai triển đó bằng

Câu 10 :

Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp A B C D . A ' B ' C ' D ' có tọa độ các điểm A 1 ; 2 ; - 1 , C 3 ; - 4 ; 1 , D ' 0 ; 3 ; 5 . Giả sử tọa độ điểm A'(x;y;z) thì x + y + z bằng

Câu 11 :

Giá trị lớn nhất M của hàm số y = x 3 - 3 x 2 - 1 trên đoạn 0 ; 3 là:

Câu 12 :

Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng P : 3 x - 2 y + z - 14 = 0 . Gọi H(x,y,z) là hình chiếu của O lên mặt phẳng (P) thì x + y + z bằng

Câu 13 :

Với các số dương a,b bất kì, đặt M = a 12 b 3 5 - 0 , 3 . Mệnh đề nào dưới đây là đúng?

Câu 14 :

Hàm số nào sau đây có đồ thị phù hợp hình vẽ?

Câu 15 :

Cho hàm số f x = 2 x 2 + x k h i x 0 x . sin x k h i x 0 . Tính - π 1 f x d x

Câu 16 :

Cho số phức z thỏa mãn z + 2 i = 5 . Tìm giá trị lớn nhất của |z|:

Câu 17 :

Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được một cấp số cộng có 1001 số hạng. Tính số hạng thứ 501.

Câu 18 :

Cho hình tròn (C) , bán kính R = 2 . Cắt 1 4 hình tròn (C) (như hình vẽ), rồi lấy 1 4 hình tròn đó dán kín OA và OB lại để tạo ra mặt xung quanh của một hình nón. Tính diện tích toàn phần của hình nón.

Câu 19 :

Cho hàm số y = f(x) xác định, liên tục trên R và có đạo hàm f'(x). Biết rằng hàm số f'(x) có đồ thị như hình vẽ bên dưới. Mệnh đề nào sau đây đúng?

Câu 20 :

Cho hàm số y = 4 3 x 3 + 4 x 2 = m x + 10 (1) với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên của tham số thực m lớn hơn -10 để hàm số (1) đồng biến trên khoảng - ; 0

Câu 21 :

Đặt (S) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = 4 - x 2 , trục hoành và đường thẳng x = - 2 , x = m - 2 < m < 2 . Tìm giá trị của tham số m để S = 25 3

Câu 22 :

Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = 1 + x + 1 x 2 - 1 - m x + 2 m có hai tiệm cận đứng?

Câu 23 :

Cho khối cầu tâm (O) bán kính 6cm. Mặt phẳng (P) cách O một khoảng x cắt khối cầu theo một hình tròn (C) . Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C) . Biết khối nón có thể tích lớn nhất, khi đó giá trị của x là:

Câu 24 :

Cho 1 2 f x 2 + 1 x . d x = 2 . Khi đó 2 5 f x d x bằng:

Câu 25 :

Cho a, b là hai số thực sao cho hàm số f x = x 2 + a x + b x - 1 k h i x 1 2 a x - 1 k h i x = 1 liên tục trên R . Tính a - b.

Câu 26 :

Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A 1 ; 2 ; 3 , B 3 ; - 2 ; 1 , C - 1 ; 4 ; 1 . Có bao nhiêu mặt phẳng qua O và cách đều ba điểm A, B, C ?

Câu 27 :

Có bao nhiêu giá trị nguyên m để hàm số y = 3 x + m sin x + cos x + m đồng biến trên R ?

Câu 28 :

Cho hình chóp đỉnh S có đường cao S O = 6 a và bán kính đáy bằng a. Biết đường tròn đáy của hình nón nội tiếp trong hình thang cân ABCD với AB//CD và A B = 4 C D , hãy tính theo a thể tích khối chóp S.ABCD.

Câu 29 :

Tìm điểm M thuộc C : y = x 3 + 3 x 2 - 1 sao cho qua M kẻ được duy nhất một tiếp tuyến tới (C) .

Câu 30 :

Hình nón (N) có đường sinh bằng 2a. Thể tích lớn nhất của khối nón (N) là:

Câu 31 :

Cho hàm số f x = x 4 + 4 m x 3 + 3 m + 1 x 2 + 1 . Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số có cực tiểu mà không có cực đại. Tính tổng các phần tử của tập S.

Câu 32 :

Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng P : 2 x - 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi là một đường thẳng chứa trong (P) , cắt và vuông góc với d . Véc tơ u a ; 1 ; b là một véc tơ chỉ phương của . Tính tổng S = a + b.

Câu 33 :

Cho hai số thực a, b thỏa mãn 3 a + b + 2 a b + 1 5 a 2 + b 2 . Tập giá trị của S = a + b là:

Câu 34 :

Thầy Hùng vay ngân hàng 100 triệu đồng, với lãi suất 1,1% /tháng. Thầy muốn hoàn nợ cho ngân hàng theo cách: sau đúng một tháng kể từ ngày vay, anh bắt đầu hoàn nợ, và những lần tiếp theo cách nhau đúng một tháng. Số tiền hoàn nợ ở mỗi lần là như nhau và trả hết nợ sau đúng 18 tháng kể từ ngày vay. Hỏi theo cách đó, số tiền lãi mà thầy Hùng ĐZ phải trả là bao nhiêu (làm tròn đến kết quả hàng nghìn)? Biết rằng, lãi suất ngân hàng không thay đổi trong suốt thời gian mà thầy vay.

Câu 35 :

Cho a, x là các số thực dương và a 1 thỏa mãn log a x = log a x . Tìm giá trị lớn nhất của a ?

Câu 36 :

Cho hình trụ (T) có hai đường tròn đáy O và O'. Một hình vuông ABCD nội tiếp trong hình trụ (trong đó các điểm A , B O ; C , D O ' ). Biết hình vuông ABCD có diện tích bằng 400 c m 2 . Tìm thể tích lớn nhất của khối trụ (T).

Câu 37 :

Parabol y = x 2 2 chia hai đường tròn có tâm tại gốc tọa độ, bán kính bằng 2 2 thành 2 phần. Tỉ số diện tích của chúng thuộc khoảng nào trong các khoảng sau đây?

Câu 38 :

Biểu đồ bên cho thấy kết quả thống kê sự tăng trưởng về số lượng của một đàn vi khuẩn; cứ sau 12 tiếng thì số lượng của một đàn vi khuẩn tăng lên gấp 2 lần. Số lượng vi khuẩn ban đầu của đàn là 250 con. Công thức nào dưới đây thể hiện sự tăng trưởng về số lượng của đàn vi khuẩn tại thời điểm t ?

Câu 39 :

Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C) , điểm D thuộc (S) (D không thuộc đường tròn (C) ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.

Câu 40 :

Cho dãy số u n thỏa mãn điều kiện u n = u n + 1 + 6 , n 2 log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n 20172018

Câu 41 :

Cho số phức z thỏa mãn: z - 4 + 3 i - z ¯ + 4 - 3 i = 10 z - 3 - 4 i nhỏ nhất. Mô đun của số phức z bằng:

Câu 42 :

Cho hàm số y = f x > 0 xác định, có đạo hàm trên đoạn [0;1] và thỏa mãn g x = 1 + 2018 0 x f t d t , g x = f 2 x . Tính 0 1 g x d x

Câu 43 :

Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên 5 tấm thẻ. Xác suất trong 5 tấm được chọn có 3 tấm thẻ mang số lẻ, 2 tấm thẻ mang số chẵn trong đó có ít nhất một tấm thẻ mang số chia hết cho 4 là

Câu 44 :

Trong không gian với hệ trục tọa độ Oxyz, c ho đường thẳng : x - 1 1 = y - 1 1 = z 2 và mặt phẳng P : a x + b y + c z - 3 = 0 . Biết mặt phẳng (P) chứa và cách O một khoảng lớn nhất. Tổng a + b + c bằng

Câu 45 :

Cho số phức z = a + b i a , b thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng

Câu 46 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, S A = a 5 , A B = 4 a , A D = a 3 . Điểm H nằm trên cạnh AB thỏa mãn A H = 1 3 H B , hai mặt phẳng (SHC) và (SHD) cùng vuông góc với mặt phẳng đáy. Cosin góc giữa SD và (SBC) bằng

Câu 47 :

Cho phương trình 25 x - m + 2 5 x + 2 m + 1 = 0 , m là tham số thực. Có bao nhiêu giá trị nguyên của m 0 ; 2018 để phương trình có nghiệm?

Câu 48 :

Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;2] thỏa mãn điều kiện f 0 = 3 225 0 2 f ' x f 2 x d x + 8 60 0 2 f ' x f x d x . Tích phân 0 2 f 3 x d x bằng

Câu 49 :

Tại trạm xe khách có 5 hành khách đang chờ xe đón, không ai quen nhau trong đó có anh A và chị B. Khi đó có 1 chiếc xe ghé trạm đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống, mỗi ghế trống chỉ 1 người ngồi gồm có 1 dãy ghế trống 3 chỗ và 2 chỗ ghế đơn để chở 5 người. Tham khảo hình vẽ bên các ghế trống được ghi là (1) , (2), (3), (4), (5) và 5 hành khách lên ngồi ngẫu nhiên vào 5 chỗ trống. Xác suất để anh A và chị B ngồi cạnh nhau bằng

Câu 50 :

Cho x, y là các số dương x y < 4 y - 1 . Giá trị nhỏ nhất của P = 6 2 x + y x + ln x + 2 y y a + ln b a , b . Tích ab bằng