190 Bài trắc nghiệm Mặt nón, mặt trụ, mặt cầu cực hay có lời giải chi tiết (P5)
Vui lòng cài đặt đề thi trước khi làm bài
Cho hình cầu tâm O, đường kính 2R và hình trụ tròn xoay nội tiếp trong hình cầu. Hãy tìm kích thước của hình trụ khi nó có thể tích đạt giá trị lớn nhất.
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một nón tròn xoay (N) có góc ở đỉnh bằng . Tính tỉ số thể tích của hình trụ (T) và hình nón (N).
Chiều cao của khối trụ có thể tích lớn nhất nội tiếp trong hình cầu có bán kính R là
Cho hình nón có chiều cao h. Tính chiều cao x của khối trụ có thể tích lớn nhất nội tiếp trong hình nón theo h
Hình nón có thể tích lớn nhất nội tiếp một mặt cầu bán kính R cho trước bằng:
Tìm hình nón có thể tích nhỏ nhất ngoại tiếp mặt cầu bán kính r cho trước có thể tích bằng:
Tính thể tích của vật thể tròn xoay khi quay mô hình (như hình vẽ) quanh trục DF
Cho hình nón có độ dài đường kính đáy là 2R , độ dài đường sinh là và hình trụ có chiều cao và đường kính đáy đều bằng 2R , lồng vào nhau như hình vẽ. Tính thể tích phần khối trụ không giao với khối nón
Một nút chai thủy tinh là một khối tròn xoay (H), một mặt phẳng chứa trục của (H) cắt (H) theo một thiết diện như trong hình vẽ bên. Tính thể tích của (H) (đơn vị cm 3 ).
Trong mặt phẳng cho góc xOy. Một mặt phẳng (P) thay đổi và vuông góc với đường phân giác trong của góc cắt Ox, Oy lần lượt tại A,B. Trong (P) lấy điểm M sao cho . Mệnh đề nào sau đây là đúng ?
Cho lục giác đều ABCDEF có cạnh bằng 4. Quay lục giác đều đó quanh đường thẳng AD. Tính thể tích V của khối tròn xoay được sinh ra
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh đường thẳng CD. Thể tích khối tròn xoay thu được là:
Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r=2m, chiều cao h=6m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V.
Cho hình vuông ABCD có cạnh bằng 1m. Gọi M là trung điểm của AB, N thuộc cạnh BC thỏa mãn NC=2NB. Gọi V là thể tích khối tròn xoay khi quay đa giác ADCNM quanh trục BC. Tính V.
Cho hình trụ tròn xoay, đáy là 2 đường tròn (C) tâm O và (C) tâm O’. Xét hình nón tròn xoay có đỉnh O’ và đáy là đường tròn (C). Xét hai mệnh đề sau: (I) Nếu thiết diện qua trục của hình nón là tam giác đều O’AB thì thiết diện qua trục của hình trụ là hình vuông ABB’A’. (II) Nếu thiết diện qua trục của hình trụ là hình vuông ABB’A’ thì thiết diện qua trục của hình nón là tam giác O’AB vuông cân tại O’. Hãy chọn câu đúng.
Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính của quả bóng bàn. Gọi và tổng diện tích của ba quả bóng bàn, là diện tích xung quanh của hình trụ. Tỉ số bằng:
Trong mặt phẳng cho một hình lục giác đều cạnh bằng 2. Tính thể tích của hình tròn xoay có được khi quay hình lục giác đó quanh đường thẳng đi qua hai đỉnh đối diện của nó.
Cho hình trụ có bán kính đáy r 1 nội tiếp trong hình cầu bán kính r không đổi. Xác định bán kính r 1 theo r để hình trụ có thể tích lớn nhất.
Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính quả bóng bàn Gọi S 1 là tổng diện tích của ba quả bóng bàn, S 2 là diện tích xung quanh của hình trụ Tỉ số bằng :
Một hình trụ tròn xoay bán kính R=1. Trên hai đường tròn đáy (O) và (O’). Lấy A và B sao cho AB=2. Góc giữa AB và trục OO’ bằng . Xét hai khẳng định sau:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng Hai điểm A,B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng . Khoảng cách giữa AB và trục của hình trụ bằng:
Cho hình trụ có hai đáy là các hình tròn (O), (O’) bán kính bằng a, chiều cao hình trụ gấp hai lần bán kính đáy. Các điểm A, B tương ứng nằm trên hai đường tròn (O), (O’) sao cho . Tính thể tích khối tứ diện ABOO’ theo a
Một cây thông Noel có dạnh hình nón với chiều dài đường sinh bằng 60cm và bán kính đáy r=10cm. Một chú kiến bắt đầu xuất phát từ một đỉnh nằm trên mặt đáy hình nón và có dự định bò một vòng quanh cây thông sau đó quay trở lại vị trí xuất phát ban đầu. Tính quãng đường ngắn nhất mà chú kiến có thể đi được là bao nhiêu?
Các bán kính đáy của một hình nón cụt lần lượt là x và 3x, đường sinh là 2,9x. Khi đó thể tích khối nón cụt là.
Trong không gian, cho hình thang vuông ABCD (vuông tại A,D ) có AB=3, DC=AD=1. Tính thể tích V của khối tròn xoay nhận được khi quay hình thang ABCD xung quanh trục DC .
Cho hình thang ABCD có AB//CD và AB=AD=BC=a, CD=2a. Tính thể tích khối tròn xoay tạo được khi quay hình thang ABCD quanh trục là đường thẳng AB.
Cho hình thang ABCD có AB=BC=a, AD=2a, . Tính thể tích khối tròn xoay sinh ra khi hình thang ABCD quay quanh CD.
Cho tam giác vuông cân ABC có và hình chữ nhật MNPQ với MQ=2MN được xếp chồng lên nhau sao cho M, N lần lượt là trung điểm của AB, AC (như hình vẽ). Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục AI, với I là trung điểm PQ.
Cho tam giác ABC vuông tại A có BC=2a, AC=a. Quay tam giác này quanh trục AB, ta được một hình nón đỉnh B. Gọi S 1 là diện tích toàn phần của hình nón đó và S 2 là diện tích mặt cầu có đường kính AB. Khi đó, tỉ số là:
Cho tam giác ABC có . Quay tam giác ABC xung quanh cạnh BC ta được khối tròn xoay có thể tích V bằng:
Cho hình nón có thiết diện qua trục là tam giác đều. Gọi V 1 , V 2 lần lượt là thể tích của khối cầu nội tiếp và nội tiếp hình nón đã cho. Tính .
Cho hình vuông ABCD cạnh a. Gọi N là điểm thuộc cạnh AD sao cho AN=2DN. Đường thẳng qua N vuông góc với BN cắt BC tại K. Thể tích khối tròn xoay tạo thành khi quay tứ giác ANKB quanh trục BK bằng
Ông An đặt hàng cho một cơ sở sản xuất chai lọ thủy tinh chất lượng cao X để làm loại chai nước có kích thước phần không gian bên trong của chai như hình vẽ, đáy dưới có bán kính R=5cm, bán kính cổ chai r=2cm, AB=3cm, BC=6cm, CD=16cm. Tính thể tích V phần không gian bên trong của chai nước.
Cho hình nón có chiều cao h . Tính chiều cao x của khối trụ có thể tích lớn nhất nội tiếp trong hình nón theo h .
Cho hình nón (N) có bán kính đáy r=20(cm), chiều cao h=60(cm) và một hình trụ (T) nội tiếp hình nón (N) (hình trụ (T) có một đáy thuộc đáy hình nón và một đáy nằm trên mặt xung quanh của hình nón). Tính thể tích V của hình trụ (T) có diện tích xung quanh lớn nhất?