Đề thi thử THPT QG năm 2022 môn Toán online - Đề thi của Trường THPT Tân Phong

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1

Có bao nhiêu số nguyên dương m để bất phương trình $m{{.9}^{x}}-\left( 2m+1 \right){{.6}^{x}}+m{{.4}^{x}}\le 0$ nghiệm đúng với mọi $x\in \left( 0;1 \right)?$

Câu 2

Biết $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right)={{e}^{2x}}$ và $F\left( 0 \right)=\frac{3}{2}.$ Tính $F\left( \frac{1}{2} \right).$ 

Câu 3

Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất P để 3 quyển được lấy ra có ít nhất một quyển sách là toán. 

Câu 4

Cho tam giác ABC có $\widehat{ABC}={{45}^{0}},\widehat{ACB}={{30}^{0}},AB=\frac{\sqrt{2}}{2}.$ Quay tam giác ABC xung quanh cạnh BC ta được khối tròn xoay có thể tích V bằng: 

Câu 5

Cho hàm số $y=\frac{2x+1}{1-x}$. Mệnh đề nào sau đây là đúng?

Câu 6

Tìm tập xác định của hàm số $y={{\left( 3{{x}^{2}}-1 \right)}^{\frac{1}{3}}}.$ 

Câu 7

Cho hàm số $y=f\left( x \right)$ liên tục trên R và thỏa mãn $\int\limits_{{}}^{{}}{f\left( x \right)dx}=4{{x}^{3}}-3{{x}^{2}}+2x+C$. Hàm số $f\left( x \right)$ là hàm số nào trong các hàm số sau? 

Câu 8

Cho hàm số $y=\frac{2x+1}{x+1}$ có đồ thị $\left( C \right)$. Tìm tất cả các giá trị thực của tham số m sao cho đường thẳng $d:\,\,y=x+m-1$ cắt $\left( C \right)$ tại hai điểm phân biệt $AB$ thỏa mãn $AB=2\sqrt{3}$. 

Câu 9

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( P \right):\,\,2x-5z+1=0$, vectơ $\overrightarrow{n}$ nào sau đây là vectơ pháp tuyến của (P)? 

Câu 10

Trong không gian với hệ tọa độ Oxyz, cho $M\left( 3;2;1 \right)$. Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trục tâm tam giác ABC. Phương trình mặt phẳng (P) là: 

Câu 11

Trong không gian với hệ tọa độ Oxyz, cho ba điểm $A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right).$ Gọi M là điểm thay đổi trên mặt phẳng (ABC) và N là điểm trên tia OM sao cho OM.ON = 1. Biết rằng N luôn thuộc mặt cầu cố định. Viết phương trình mặt cầu đó? 

Câu 12

Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, $AB=a,BC=a\sqrt{3}$, góc hợp bởi đường thẳng AA’ và mặt phẳng (A’B’C) bằng ${{45}^{0}}$, hình chiếu vuông góc của B’ lên (ABC) trùng với trọng tâm của tam giác ABC. Tính thế tích V khối lăng trụ ABC.A’B’C’. 

Câu 13

Cho ${{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+y \right)$. Tính giá trị tỷ số $\frac{x}{y}$ ?  

Câu 14

Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số có năm chữ số khác nhau từng đôi một? 

Câu 15

Tính diện tích S của hình phẳng giới hạn bởi đường thẳng $y=2x+1$ và đồ thị hàm số $y={{x}^{2}}-x+3$  

Câu 16

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

Câu 17

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số $y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2$ nghịch biến trên R. 

Câu 18

Cho biết $0<a<1$. Chọn khẳng định đúng trong các khẳng định sau: 

Câu 19

Xác định phần ảo của số phức $z=12-18i$ ? 

Câu 20

Cho hàm số $f\left( x \right)$ có đạo hàm $f'\left( x \right)={{x}^{2}}{{\left( x-1 \right)}^{3}}\left( x-2 \right)$. Số điểm cực trị của hàm số $f\left( x \right)$ bằng: 

Câu 21

Cho số phức $z$ thỏa mãn $\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i$. Chọn khẳng định đúng? 

Câu 22

Tìm tập nghiệm S của bất phương trình ${{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)$. 

Câu 23

Cho chuyển động thẳng xác định bởi mặt phương trình $s=\frac{1}{2}\left( {{t}^{4}}+3{{t}^{2}} \right),$  t được tính bằng giây, s được tính bằng m. Vận tốc của chuyển động tại t = 4 (giây) bằng: 

Câu 24

Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng $\left( P \right):\,\,x-2y+z-1=0$, $\left( Q \right):\,\,x-2y+z+8=0$ và $\left( R \right):\,\,x-2y+z-4=0$. Một đường thẳng d thay đổi cắt ba mặt phẳng $\left( P \right);\left( Q \right);\left( R \right)$ lần lượt tại A, B, C. Đặt $T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}$. Tìm giá trị nhỏ nhất của $T$. 

Câu 25

Trong không gian với hệ tọa độ Oxyz, cho hai điểm $A\left( -1;2;-4 \right)$ và $B\left( 1;0;2 \right)$. Viết phương trình đường thẳng d đi qua hai điểm A và B. 

Câu 26

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD. 

Câu 27

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-6z+9=0$. Tìm tâm I và bán kính R của mặt cầu? 

Câu 28

Cho khai triển nhị thức Newton ${{\left( 2-3x \right)}^{2x}}$, biết rằng n là số nguyên dương thỏa mãn $C_{2n+1}^{1}+C_{2n+1}^{3}+C_{2n+1}^{5}+...+C_{2n+1}^{2n+1}=1024$. Tìm hệ số của ${{x}^{7}}$ trong khai triển ${{\left( 2-3x \right)}^{2n}}$ 

Câu 29

Tính đạo hàm của hàm số $y={{\log }_{2018}}\left( 3x+1 \right)$. 

Câu 30

Cho hàm số $f\left( x \right)$ có đạo hàm $f'\left( x \right)$ liên tục trên $\left[ a;b \right];f\left( b \right)=5$ và $\int\limits_{a}^{b}{f'\left( x \right)dx}=3\sqrt{5}$. Tính giá trị $f\left( a \right)?$  

Câu 31

Tìm tất cả các giá trị ${{y}_{0}}$ để đường thẳng $y={{y}_{0}}$ cắt đồ thị hàm số $y={{x}^{4}}-{{x}^{2}}$ tại bốn điểm phân biệt?

Câu 32

Cho hình lăng trụ ABC.A’B’C’ có mặt đáy ABC là tam giác đều cạnh AB = 2a. Hình chiếu vuông góc của A’ trên (ABC) trùng với trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt đáy bằng ${{60}^{0}}$. Tính tang của góc $\varphi $ giữa hai mặt phẳng (ABC) và (BCC’B’). 

Câu 33

Cho hàm số $y=\frac{1}{4}{{x}^{4}}-2{{x}^{2}}+2018$. Khẳng định nào sau đây là đúng? 

Câu 34

Trong không gian với hệ tọa độ Oxyz, cho hai vectơ $\overrightarrow{a}=\left( 3;-2;1 \right),\overrightarrow{b}=\left( -2;-1;1 \right)$. Tính $P=\overrightarrow{a}.\overrightarrow{b}$ ?

Câu 35

Phương trình $\sin 2x+\cos x=0$ có tổng các nghiệm trong khoảng $\left( 0;2\pi  \right)$ bằng:

Câu 36

Cho hai số phức $z=2+3i,z'=3-2i$. Tìm môđun của số phức $w=z.z'$. 

Câu 37

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Cho biết SB = 3a, AB = 4a, BC = 2a. Tính khoảng cách d từ điểm B đến mặt phẳng (SAC). 

Câu 38

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a. Các cạnh bên của hình chóp đều bằng $a\sqrt{2}$. Tính góc giữa hai đường thẳng AB và SC. 

Câu 39

Cho hình nón có bán kính đáy bằng a, thể tích khối nón tương ứng $V=2\pi {{a}^{3}}.$ Diện tích xung quanh của hình nón là:

Câu 40

Biết rằng $I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)$ với $a,b,c\in Z$. Mệnh đề nào sau đây là đúng? 

Câu 41

Cho hàm số $y=f\left( x \right)$ xác định và liên tục trên $\left( -\infty ;0 \right)$ và $\left( 0;+\infty  \right)$ có bảng biến thiên như sau: Mệnh đề nào dưới đây là đúng?

Câu 42

Tìm tất cả các giá trị của x thỏa mãn $\int\limits_{0}^{x}{\sin 2tdt}=0$ 

Câu 43

Trong không gian với hệ tọa độ Oxy, cho hai đường thẳng $d:\,\,\frac{x}{1}=\frac{y}{-2}=\frac{z+1}{-1}$ và $d':\,\,\frac{x-1}{-2}=\frac{y-2}{4}=\frac{z}{2}$. Viết phương trình mặt phẳng (Q) chứa hai đường thẳng d và d’. 

Câu 44

Cho hàm số $y={{x}^{3}}+{{x}^{2}}-5x+1$. Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x = 2. 

Câu 45

:

Sân trường THPT Chuyên Hà Giang có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích S1, S2 dùng để trồng hoa, phần diện tích S3, S4 dùng để trồng cỏ (Diện tích được làm tròn đến hàng phần trăm). Biết kinh phí trồng hoa là 150.000 đồng/ 1 m2, kinh phí trồng cỏ là 100.000 đồng/1m2. Hỏi cả trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn).

Câu 46

Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng 4. Hình chiếu vuông góc của A’ trên (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC. Gọi M là trung điểm của cạnh AC, tính khoảng cách d giữa hai đường thẳng BM và B’C. 

Câu 47

Cho dãy số $\left( {{u}_{n}} \right)$ xác định bởi $\left\{ \begin{align} & {{u}_{1}}=1 \\ & {{u}_{n+1}}=2{{u}_{n}}+5\,\,\left( \forall n\ge 1 \right) \\ \end{align} \right.$. Tìm số nguyên n nhỏ nhất để ${{u}_{n}}>2018.$ 

Câu 48

Tìm giá trị lớn nhất của hàm số $y=\sqrt{x+1}+\sqrt{3-x}$  

Câu 49

Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức ${{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.$  Tam giác ABC là 

Câu 50

Đồ thị hàm số $y=\frac{2}{x-1}$ có bao nhiêu đường tiệm cận?