Đề thi thử THPT QG năm 2021 môn Toán online - Đề thi của Trường THPT Tô Hiệu lần 2

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1

Một đội văn nghệ có 10 người gồm 6 nam và 4 nữ. Cần chọn ra một bạn nam và một bạn nữ để hát song ca. Hỏi có bao nhiêu cách chọn?

Câu 2

Cho cấp số nhân $\left( {{u}_{n}} \right)$ có ${{u}_{1}}=-2$ và công bội q=3. Số hạng ${{u}_{2}}$ là

Câu 3

Cho hàm số $y=f\left( x \right)$ xác định, liên tục trên $\mathbb{R}$ và có bảng biến thiên

Khẳng định nào sau đây là khẳng định đúng?

Câu 4

Cho hàm số $f\left( x \right)$ có bảng biến thiên như hình vẽ.

Điểm cực tiểu của hàm số đã cho là

Câu 5

:

Cho hàm số $y=f\left( x \right)$ xác định, liên tục trên $\mathbb{R}$ và có bảng biến thiên dưới đây

Hàm số $y=f\left( x \right)$ có bao nhiêu điểm cực trị?

Câu 6

Các đường tiệm cận đứng và ngang của đồ thị hàm số $y=\frac{2x+1}{x-1}$ là:

Câu 7

:

Đường cong ở hình bên là đồ thị của hàm số nào?

Câu 8

Số giao điểm của đồ thị hàm số $y={{x}^{4}}-4{{x}^{2}}-5$ và trục hoành là

Câu 9

Với a là số thực dương tùy ý khác 1, ta có ${{\log }_{3}}\left( {{a}^{2}} \right)$ bằng:

Câu 10

Tính đạo hàm của hàm số $y={{\log }_{5}}({{x}^{2}}+1).$

Câu 11

Cho a là số dương tuỳ ý, $\sqrt[4]{{{a}^{3}}}$ bằng

Câu 12

Tìm tập nghiệm S của phương trình ${{{5}^{2{{x}^{2}}-x}}=5}$

Câu 13

Nghiệm nhỏ nhất của phương trình ${{\log }_{5}}\left( {{x}^{2}}-3x+5 \right)=1$ là

Câu 14

Họ nguyên hàm của hàm số $f\left( x \right)={{\text{e}}^{x}}+\cos x$ là

Câu 15

Tìm nguyên hàm của hàm số $f\left( x \right)=\frac{2}{4x-3}$

Câu 16

Nếu $\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=3$ và $\int\limits_{5}^{7}{f\left( x \right)\text{d}x}=9$ thì $\int\limits_{2}^{7}{f\left( x \right)\text{d}x}$ bằng bao nhiêu?

Câu 17

Giá trị của $\int\limits_{0}^{3}{\text{d}x}$ bằng

Câu 18

Số phức liên hợp của số phức $z=-2+3i$.

Câu 19

Cho hai số phức ${{z}_{1}}=3+2i$ và ${{z}_{2}}=1-i$. Phần ảo của số phức ${{z}_{1}}-{{z}_{2}}$ bằng 

Câu 20

Cho hai số phức ${{z}_{1}}=2+2i$ và ${{z}_{2}}=2-i$. Điểm biểu diễn số phức ${{z}_{1}}+{{z}_{2}}$ trên mặt phẳng tọa độ là điểm nào dưới đây?

Câu 21

Thể tích của khối hộp chữ nhật có độ dài ba cạnh lần lượt là $1;2;3$

Câu 22

Khối chóp có diện tích đáy là $B$, chiều cao bằng $h$. Thể tích $V$ của khối chóp là

Câu 23

Cho khối nón có bán kính đáy $r=\sqrt{3}$ và chiều cao h=4. Tính thể tích V của khối nón đã cho.

Câu 24

Cho hình trụ có bán kính đáy $r$ và độ dài đường sinh là $l$. Thể tích khối trụ là:

Câu 25

Trong không gian với hệ trục tọa độ Oxyz, cho $\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là

Câu 26

Trong không gian Oxyz, cho mặt cầu $\left( S \right): {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-6z+5=0$. Tọa độ tâm I và bán kính của mặt cầu $\left( S \right)$ bằng:

Câu 27

Trong không gian với hệ tọa độ Oxyz, cho điểm $A\left( -2;0;0 \right)$ và vectơ $\overrightarrow{n}\left( 0;1;1 \right)$. Phương trình mặt phẳng $\left( \alpha  \right)$ có vectơ pháp tuyến $\overrightarrow{n}$ và đi qua điểm A là

Câu 28

Trong không gian với hệ tọa độ Oxyz, cho hai điểm $A\left( 1;2;2 \right), B\left( 3;-2;0 \right)$. Một vectơ chỉ phương của đường thẳng AB là:

Câu 29

Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để lấy được cả hai quả trắng là:

Câu 30

Hàm số $y={{x}^{3}}-3{{x}^{2}}+10$ nghịch biến trên khoảng nào sau đây?

Câu 31

Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y=2{{x}^{3}}+3{{x}^{2}}-1$ trên đoạn $\left[ -2;1 \right]$. Tổng M+m bằng:

Câu 32

Tập nghiệm của bất phương trình ${{\log }_{3-\sqrt{5}}}\left( 2x-3 \right)\ge 0$ là

Câu 33

Cho $\int\limits_{0}^{2}{f\left( x \right)\text{d}x}=3,\int\limits_{0}^{2}{g\left( x \right)\text{d}x}=-1$ thì $\int\limits_{0}^{2}{\left[ f\left( x \right)-5g\left( x \right)+x \right]\text{d}x}$ bằng:

Câu 34

Cho số phức z thỏa mãn: $z\left( 2-i \right)+13i=1$. Tính mô đun của số phức z.

Câu 35

Cho hình chóp $S.ABC\text{D}$ có đáy là hình vuông, $AC=a\sqrt{2}$ . SA vuông góc với mặt phẳng $\left( ABCD \right), SA=a\sqrt{3}$ (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng $\left( ABCD \right)$ bằng

Câu 36

Cho hình chóp tứ giác đều S.ABCD có các cạnh đáy đều bằng a và các cạnh bên đều bằng 2a. Tính khoảng cách từ S đến mặt phẳng (ABCD).

Câu 37

Trong không gian Oxyz, cho hai điểm $A\left( -2;1;0 \right), B\left( 2;-1;2 \right)$. Phương trình của mặt cầu có đường kính AB là

Câu 38

Phương trình tham số của đường thẳng $\left( d \right)$ đi qua hai điểm $A\left( 1;2;-3 \right)$ và $B\left( 3;-1;1 \right)$ là

Câu 39

:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Đặt $g\left( x \right)=f\left( x+2 \right)+\frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x+2019$. Khẳng định nào sau đây đúng?

Câu 40

Tìm tất cả giá trị của tham số m để bất phương trình $\log \left( 2{{x}^{2}}+3 \right)>\log \left( {{x}^{2}}+mx+1 \right)$ có tập nghiệm là $\mathbb{R}$.

Câu 41

Cho hàm số $y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 3\quad khi\;x \ge 1\\5 - x\quad \;\,khi\;x < 1\end{array} \right.$. Tính $I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx + 3\int\limits_0^1 {f\left( {3 - 2x} \right)} } dx$

Câu 42

Tìm phần ảo của số phức z thỏa mãn $z+2\overline{z}={{\left( 2-i \right)}^{3}}\left( 1-i \right)$.

Câu 43

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a góc giữa cạnh bên và mặt phẳng đáy bằng $60{}^\circ $. Tính thể tích khối chóp S.ABCD.

Câu 44

:

Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000$ đồng/$1\,{{m}^{2}}$. Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền được làm tròn đến hàng nghìn).

Câu 45

Trong không gian Oxyz, cho đường thẳng $d:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-2}{3}$ và mặt phẳng $\left( P \right):x-y-z-1=0$. Phương trình đường thẳng $\Delta $ đi qua $A\left( 1;\,1;\,-2 \right)$, song song với mặt phẳng $\left( P \right)$ và vuông góc với đường thẳng d là

Câu 46

:

Cho hàm số $y=f\left( x \right)$ có đồ thị như hình bên.

Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số $y=\left| f\left( x-2018 \right)+m \right|$ có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng

Câu 47

Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn $\log _{3}^{{}}\left( x+y \right)=\log _{4}^{{}}\left( {{x}^{2}}+{{y}^{2}} \right)$?

Câu 48

Cho hàm số $y=f\left( x \right)$. Hàm số $y={f}'\left( x \right)$ có đồ thị như hình vẽ dưới đây

Biết rằng diện tích hình phẳng giới hạn bởi trục Ox và đồ thị hàm số $y={f}'\left( x \right)$ trên đoạn $\left[ -2;\,1 \right]$ và $\left[ 1;\,4 \right]$ lần lượt bằng 9 và 12. Cho $f\left( 1 \right)=3$. Giá trị biểu thức $f\left( -2 \right)+f\left( 4 \right)$ bằng

Câu 49

Cho số phức z thỏa mãn điều kiện $\left| \frac{z+2-i}{\overline{z}+1-i} \right|=\sqrt{2}$. Tìm giá trị lớn nhất của $\left| z \right|$.

Câu 50

Trong không gian Oxyz, cho hai điểm $A\left( 3\,;1\,;-3 \right), B\left( 0\,;-2\,;3 \right)$ và mặt cầu $\left( S \right):{{\left( x+1 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}=1$. Xét điểm M thay đổi thuộc mặt cầu $\left( S \right)$, giá trị lớn nhất của $M{{A}^{2}}+2M{{B}^{2}}$ bằng