Đề thi thử giữa học kỳ 2 môn Toán lớp 12 online - Mã đề 04
Vui lòng cài đặt đề thi trước khi làm bài
Đồ thị trong hình vẽ dưới đây là đồ thị của hàm số nào?
Số tiếp tuyến của đồ thị hàm số $y = {x^4} - 2{x^2} - 3$ song song với trục hoành là :
Cho hàm số $f\left( x \right)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ
Hàm số đồng biến trên khoảng:
Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, $\widehat {ABC} = {120^0}$; $AA' = 4a$ Tính khoảng cách giữa hai đường thẳng A’C và BB’?
Đồ thị hàm số $y = \dfrac{{2x - 3}}{{x - 1}}$ có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).$Mệnh đề nào dưới đây đúng?
Có bao nhiêu điểm thuộc đồ thị hàm số $y = \dfrac{{2x - 1}}{{x - 1}}$ thỏa mãn tiếp tuyến với đồ thị tại điểm đó có hệ số góc bằng 2018?
Số giao điểm của đồ thị hàm số $y = {x^4} - 2{x^2} + 1$ và đường thẳng $y = 1$ là:
Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết $SB = a$ và SC hợp với (SAB) một góc 300 và (SAC) hợp với (ABC) một góc 600. Thể tích khối chóp là:
Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x + 1 - \sqrt {3x + 1} }}{{{x^2} - 3x + 2}}$ là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có diện tích các mặt ABCD, ABB'A', ADD'A' lần lượt bằng $36c{m^2}$, $225c{m^2}$, $100c{m^2}$. Tính thể tích khối A.A'B'D'.
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ
Đồ thị hàm số $y = \left| {f\left( x \right) - 2m} \right|$ có 5 điểm cực trị khi và chỉ khi
Một đường thẳng cắt đồ thị hàm số $y = {x^4} - 2{x^2}$ tại 4 điểm phân biệt có hoành độ $0,{\mkern 1mu} 1,{\mkern 1mu} m$ và n. Tính $S = {m^2} + {n^2}.$
Đồ thị sau đây là của hàm số $y = {x^4} - 3{x^2} - 3.$ Với giá trị nào của m thì phương trình ${x^4} - 3{x^2} - 3 = m$ có đúng 3 nghiệm phân biệt.
Cho khối chóp S.ABC có $SA \bot \left( {ABC} \right)$, $SA = a$, $AB = a$, $AC = 2a$, $BC = a\sqrt 3 .$ Tính thể tích khối chóp S.ABC.
Đồ thị hàm số $y = \dfrac{x}{{\sqrt {{x^2} - 1} }}$ có bao nhiêu đường tiệm cận
Xét các khẳng định sau
i) Nếu hàm số $y = f\left( x \right)$ có đạo hàm cấp hai trên $\mathbb{R}$và đạt cực tiểu tại $x = {x_0}$ thì $\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) > 0}\end{array}} \right.$
ii) Nếu hàm số $y = f\left( x \right)$ có đạo hàm cấp hai trên $\mathbb{R}$và đạt cực đại tại $x = {x_0}$ thì $\left\{ {\begin{array}{*{20}{l}}{f'({x_0}) = 0}\\{f''({x_0}) < 0}\end{array}} \right.$
iii) Nếu hàm số $y = f\left( x \right)$ có đạo hàm cấp hai trên $\mathbb{R}$ và $f''({x_0}) = 0$thì hàm số không đạt cực trị tại $x = {x_0}$
Số khẳng định đúng trong các khẳng định trên là
Gọi I là tâm đối xứng của đồ thị hàm số $y = \dfrac{{2x - 3}}{{x + 2}}$. Tìm tọa độ điểm $I$.
Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BC' và B'D' là:
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $f\left( x \right) = 2{x^3} + 3{x^2} - 1$ trên đoạn$\left[ { - 2; - \dfrac{1}{2}} \right]$. Tính $P = M - m$.
Khối đa diện đều loại $\left\{ {5;3} \right\}$ có bao nhiêu mặt?
Cho hàm số $y = f\left( x \right)$ liên tục trên $\mathbb{R}$ và có đạo hàm $f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}}$ . Khẳng định nào dưới đây đúng ?
Cho hình chóp S.ABCD có đáy là hình thoi cạnh $a$, $\angle BAD = {60^0}$, cạnh bên $SA = a$ và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ $B$ đến mặt phẳng $\left( {SCD} \right)$.
Cho hàm số $y = \dfrac{{x + 3}}{{ - 1 - x}}$. Tìm mệnh đề đúng trong các mệnh đề sau:
Tìm giá trị nhỏ nhất của hàm số $y = \dfrac{{{x^2} - 5}}{{x + 3}}$ trên $\left[ {0;2} \right].$
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, $AB = 2a,{\mkern 1mu} {\mkern 1mu} \widehat {BAC} = {60^0}$ và $SA = a\sqrt 2 .$ Góc giữa đường thẳng SB và mặt phẳng $\left( {SAC} \right)$ bằng
Cho hàm số $y = a{x^4} + b{x^2} + c$ có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Phát biểu nào sau đây là sai?
Gọi $A\left( {{x_1};{y_1}} \right)$, $B\left( {{x_2};{y_2}} \right)$ là hai điểm cực trị của đồ thị hàm số $y = {x^3} - 3x - 2$. Giá trị ${y_1} + {y_2}$ bằng
Đồ thị hình bên là của hàm số nào?
Cho hàm số $y = f(x)$ có đạo hàm $f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}}$. Tìm số điểm cực trị của $f(x)$.
Cho hàm số $y = f\left( x \right)$ liên tục trên đoạn $\left[ { - 3;4} \right]$ và có đồ thị như hình vẽ bên. Gọi $M$ và $m$ lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn $\left[ { - 3;4} \right]$. Tính $M + m$.
Khẳng định nào dưới đây về hàm số $y = {\rm{\;}} - {x^4} - 3{x^2} + 2$ là đúng?
Cho hình chóp S.ABC có $A',{\mkern 1mu} {\mkern 1mu} B'$ lần lượt là trung điểm của $SA,{\mkern 1mu} {\mkern 1mu} SB$. Biết thể tích khối chóp S.ABC bằng 24. Tính thể tích $V$ của khối chóp S.A'B'C.
Cho biết bảng biến thiên ở hình dưới là của một trong bốn hàm số được liệt kê dưới đây. Hãy tìm hàm số đó.
Cho hình chóp đều S.ABC có độ dài cạnh đáy là 2a, mặt bên tạo với mặt đáy một góc ${60^0}$. Tính thế tích của khối chóp S.ABC?
Tìm $m$ để đường thẳng $y = 2x + m$ cắt đồ thị hàm số $y = \dfrac{{x + 3}}{{x + 1}}$ tại hai điểm $M,\;N$ sao cho độ dài MN nhỏ nhất:
Cho khối chóp tam giác có thể tích bằng 6. Gọi $M,{\mkern 1mu} {\mkern 1mu} N,{\mkern 1mu} {\mkern 1mu} P$ lần lượt là trung điểm các cạnh $BC,{\mkern 1mu} {\mkern 1mu} CA,{\mkern 1mu} {\mkern 1mu} AB$. Thể tích của khối chóp S.MNP là?