Biết đường thẳng $y = - {9 \over 4}x - {1 \over {24}}$ cắt đồ thị hàm số $y = {{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x$ tại một điểm duy nhất, ký hiệu (x0 ; y0) là tọa độ điểm đó. Tìm y0.
Từ BBT, pt \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow \) đường thẳng y= -m cắt đths \(y = {x^3} - 6{x^2}\) tại 3 điểm \( \Leftrightarrow \) \(\begin{array}{l} - 32 < - m < 0 \Rightarrow \left\{ \begin{array}{l}0 < m < 32\\m \in \mathbb{Z}\end{array} \right.\\\end{array}\)
\( \Leftrightarrow \) có 31 giá trị của m
Câu 11
Trên đồ thị hàm số $y = {{2x - 1} \over {x + 1}}$ có bao nhiêu điểm có tọa độ nguyên ?
Lời giải :
\(\begin{array}{l} y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\\ x \in Z,y \in Z \Rightarrow x + 1 \in U\left( 3 \right)\\ \Rightarrow x + 1 \in \left\{ { \pm 1; \pm 3} \right\}\\ \Rightarrow x \in \left\{ { - 2;0; - 4;2} \right\} \end{array}\)
Vậy có 4 điểm có tọa độ nguyên.
Câu 12
Cho khối chóp $S.ABC$có $SA \bot \left( {ABC} \right),$ tam giác $ABC$ vuông tại $B$, $AB = a,\,AC = a\sqrt 3 .$ Tính thể tích khối chóp $S.ABC$ biết rằng $SB = a\sqrt 5 $
Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
Lời giải :
Tam giác ABC vuông cân tại B
Ta có:
\(A{B^2} + B{C^2} = A{C^2} \)
\(\Rightarrow AB = \sqrt {\dfrac{{A{C^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\)
Cho khối chóp $S.ABCD$có đáy là hình vuông cạnh $2a$. Gọi $H$ là trung điểm cạnh $AB$ biết $SH \bot \left( {ABCD} \right)$ . Tính thể tích khối chóp biết tam giác $SAB$ đều
Cho hàm số y = f(x) có $\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\,\,\mathop {\lim }\limits_{x \to + \infty } f(x) = 2$. Khẳng định nào sau đây đúng ?
Lời giải :
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\) \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 2\) nên các đường thẳng \(y = - 2,y = 2\) là các đường tCN của ĐTHS.
Câu 20
Đồ thị sau là của hàm số nào ?
Lời giải :
Quan sát đồ thị ta thấy đây là dáng đồ thị hàm bậc ba nên loại B.
Mà \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \Rightarrow a > 0\) nên loại A.
Điểm (-1;3) thuộc đồ thị nên chọn C.
Câu 21
Giá trị lớn nhất củ hàm số $f(x) = {x^3} - 2{x^2} + x - 2$ trên đoạn [0 ; 2] bằng:
Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.
Lời giải :
Tam giác SAB nằm trong mặt phẳng vuông góc với đáy.
Gọi H là trung điểm của AB
\( \Rightarrow SH \bot AB\) hay \(SH \bot \left( {ABC} \right)\)
Xét hình chóp S.ABC với M, N, P lần lượt là các điểm trên SA, SB, SC sao cho $\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2}$. Tỉ số thể tích của khối tứ diện SMNP với SABC là:
Lời giải :
Ta có: \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2} \)
Vậy điểm đối xứng của đồ thị hàm số \(y = - \dfrac{{2x - 1}}{{x + 1}}\) là I( -1, -2)
Câu 33
Thể tích $V$ của khối lập phương $ABCD.A'B'C'D'$, biết $AB = 3a$ là:
Lời giải :
Thể tích của khối lập phương là \(V = {\left( {3a} \right)^3} = 27{a^3}\)
Chọn đáp án D.
Câu 34
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,$\widehat {BCD} = {120^0}$ và $AA' = \dfrac{{7a}}{2}$. Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Lời giải :
Ta có: \(\widehat {BCD} = \widehat {BAD} = {120^0}\)
Số giao điểm của 2 đồ thị hàm số \(y = \dfrac{{4x + 4}}{{x - 1}}\) và \(y = {x^2} - 1{\rm{ }}\) là nghiệm của pt \(\dfrac{{4x + 4}}{{x - 1}} = {x^2} - 1{\rm{ }}\)
\( \Rightarrow \) 2 đồ thị cắt nhau tại 2 điểm
Câu 38
Cho hàm số $y = {1 \over 3}{x^3} + 2{x^2} + (m + 1)x + 5$. Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên R.