Đề thi thử học kỳ 1 môn Toán lớp 11 online - Mã đề 06
Vui lòng cài đặt đề thi trước khi làm bài
Hàm số $y = \sin 3x.\cos x$ là một hàm số tuần hoàn có chu kì là
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số $y = {\sin ^4}x - 2{\cos ^2}x + 1$
Tập xác định của hàm số $y = \sqrt {1 - \cos 2017x} $ là
Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau được lập từ các số 0,2,4,6,8:
Xác định x để 3 số :$1 - x;{x^2};1 + x$ theo thứ tự lập thành cấp số cộng ?
Cho tam giác $ABC$, với $G$ là trọng tâm tam giác, $D$ là trung điểm của BC. Phép vị tự tâm $A$ biến điểm $G$ thành điểm $D$. Khi đó phép vị tự có tỉ số $k$ là
Trong mặt phẳng tọa độ$Oxy$, cho đường tròn $\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4$ . Ảnh của $\left( {\rm{C}} \right)$ qua phép vị tự tâm $I = \left( {2; - 2} \right)$ tỉ số vị tự bằng $3$ là đường tròn có phương trình
Giá trị của $n \in \mathbb{N}$ thỏa mãn $C_{n + 8}^{n + 3} = 5A_{n + 6}^3$ là:
Tìm chu kì T của hàm số $y = \cot 3x + \tan x$ là
Cho hàm số $f\left( x \right) = \left| x \right|\sin x.$ Phát biểu nào sau đây là đúng về hàm số đã cho?
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Cho cấp số nhân có ${u_1} = - 3;q = \dfrac{2}{3}$. Tính ${u_5}$
Một cấp số cộng có 13 số hạng, số hạng đầu là 2 và tổng của 13 số hạng đầu của cấp số cộng đó bằng 260. Khi đó, giá trị của ${u_{13}}$là bao nhiêu.
Phép vị tự tâm $O$ tỉ số $k$ $\left( {k \ne 0} \right)$ biến mỗi điểm $M$ thành điểm $M'$. Mệnh đề nào sau đây đúng?
Phát biểu nào sau đây sai?
Cho đường thẳng $d:3x + y + 3 = 0$. Viết phương trình của đường thẳng $d'$ là ảnh của $d$ qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm $I\left( {1;2} \right)$, góc $ - {180^0}$ và phép tịnh tiến theo vec tơ $\overrightarrow v = \left( { - 2;1} \right)$.
Cho một cấp số cộng có 20 số hạng. Đẳng thức nào sau đây là sai ?
Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81;…Khi đó ${u_n}$ có thể được tính theo biểu thức nào sau đây
Dân số của thành phố A hiện nay là $3$ triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là $2\% $. Dân số của thành phố A sau $3$ năm nữa sẽ là:
Xếp 6 người A, B, C, D, E, F vào một ghế dài . Hỏi có bao nhiêu cách sắp xếp sao cho A và F ngồi cạnh nhau:
Trong khai triển ${\left( {{a^2} + \dfrac{1}{b}} \right)^7}$ số hạng thứ 5 là:
Trong các phương trình sau đây,phương trình nào có tập nghiệm là $x = - \dfrac{\pi }{3} + k2\pi $ và $x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})$
Phương trình $\tan \left( {3x - {{15}^0}} \right) = \sqrt 3 $ có các nghiệm là:
Cho cấp số cộng $({u_n})$ có công sai $d > 0$; $\left\{ {\begin{array}{*{20}{c}}{{u_{31}} + {u_{34}} = 11}\\{{u^2}_{31} + {u^2}_{34} = 101}\end{array}} \right.$. Hãy tìm số hạng tổng quát của cấp số cộng đó.
Phát biểu nào sau đây là sai?
Trong mặt phẳng $Oxy$ cho đường tròn $\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0$, tìm phương trình đường tròn $\left( {C'} \right)$ là ảnh của đường tròn $\left( C \right)$ qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ $\overrightarrow v = \left( {3;5} \right)$ và phép vị tự ${V_{\left( {O; - \frac{1}{3}} \right)}}.$
Nghiệm âm lớn nhất của phương trình $\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 $ là:
Phương trình $sin x + cos x – 1 = 2sin xcos x$ có bao nhiêu nghiệm trên $\left[ {0;\,2\pi } \right]$ ?
Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây:
Cho hai biến số A và B có $P(A) = \dfrac{1}{3}\,,P(B) = \dfrac{1}{4}\,,\,P(A \cup B) = \dfrac{1}{2}$. Ta kết luận hai biến cố A và B là:
Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu toàn màu xanh là:
Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:
Phương trình $\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})$ có nghiệm là:
Một thầy giáo có 5 cuốn sách toán, 6 cuốn sách văn, 7 cuốn sách Anh văn và các cuốn sách đôi một khác nhau. Thầy giáo muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi thầy giáo có bao nhiêu cách tặng nếu thầy giáo chỉ muốn tặng một hoặc hai thể loại:
Một nhóm có 5 nam và 3 nữ. Chọn ra 3 người sao cho trong đó có ít nhất 1 nữ. Hỏi có bao nhiêu cách:
Trong mặt phẳng Oxy, tìm ảnh của đường tròn $\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5$ qua phép quay ${Q_{\left( {O,{{180}^0}} \right)}}$
Trong mp Oxy cho (C): ${\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9$. Phép tịnh tiến theo $\vec v\left( {3; - 2} \right)$ biến (C) thành đường tròn nào?
Giả sử phép dời hình $f$ biến tam giác $ABC$ thành tam giác A’B’C’. Xét các mệnh đề sau:
(I): Trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’
(II): Trực tâm tam giác ABC biến thành trực tâm tam giác A’B’C’
(III): Tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC lần lượt biến thành tâm đường tròn ngoại tiếp, nội tiếp tam giác A’B’C’.
Số mệnh đề đúng trong 3 mệnh đề trên là:
Cho $\Delta ABC$ có trọng tâm $G$. Gọi $M,N,P$ lần lượt là trung điểm của các cạnh $AB,BC,CA$. Phép vị tự nào sau đây biến $\Delta ABC$ thành $\Delta NPM$?
Trong mặt phẳng Oxy cho đường tròn $\left( C \right):{x^2} + {y^2} = 4$ và đường thẳng $d:x - y + 2 = 0$. Gọi M là điểm thuộc đường tròn (C) sao cho khoảng cách đến d là lớn nhất. Phép vị tự tâm O tỉ số $k = \sqrt 2 $ biến điểm M thành điểm $M'$ có tọa độ là?