Bài tập Tổ Hợp - Xác Suất từ đề thi đại học cực hay có lời giải (P1)

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1 :

Tìm tập hợp các số âm trong dãy số. x 1 ; x 2 ; x 3 ; . . . ; x n với x n = A n + 1 4 P n + 2 - 143 4 P n , n *

Câu 2 :

Trong một đợt kiểm tra về vệ sinh an toàn thực phẩm của ngành y tế tại chợ X. Ban quản lý chợ lấy ra 15 mẫu thịt lợn trong đó có 4 mẫu ở quầy A, 5 mẫu ở quầy B và 6 mẫu ở quầy C. Mỗi mẫu thịt này có khối lượng như nhau và để trong các hộp kín có kích thước giống hệt nhau. Đoàn kiểm tra lấy ra ngẫu nhiên ba hộp để phân tích, kiểm tra xem trong thịt lợn có chứa hóa chất `Super tạo nạc` (Clenbuterol) hay không. Xác suất để 3 hộp lấy ra có đủ ba loại thịt ở các quầy A, B, C là:

Câu 3 :

Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số đồng thời thỏa điều kiện. sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 số sau một đơn vị.

Câu 4 :

Cho n * 1 + x n = a n + a 1 x + . . . + a n x n . Biết rằng tồn tại số nguyên k 1 k n - 1 sao cho a k - 1 2 = a k 9 = a k + 1 24 .Tính n?

Câu 5 :

Cho hai đường thẳng d 1 , d 2 song song nhau. Trên d 1 có 6 điểm tô màu đỏ, trên d 2 có 4 điểm tô màu xanh. Chọn ngẫu nhiên 3 điểm bất kì trong các điểm trên. Tính xác suất để 3 điểm được chọn lập thành tam giác có 2 đỉnh tô màu đỏ.

Câu 6 :

Trong tuần lễ cao cấp Apec diễn ra từ ngày 06 đến ngày 11 tháng 11 năm 2017 tại Đà Nẵng, có 21 nền kinh tế thành viên tham dự trong đó có 12 nền kinh tế sáng lập Apec. Tại một cuộc họp báo, mỗi nền kinh tế thành viên cử một đại diện tham gia. Một phóng viên đã chọn ngẫu nhiên 5 đại diện để phỏng vấn. Tính xác suất để trong 5 đại diện đó có cả đại diện của nền kinh tế thành viên sáng lập Apec và nền kinh tế thành viên không sáng lập Apec.

Câu 7 :

Một bữa tiệc bàn tròn của các câu lạc bộ trong trường Đại học Sư Phạm Hà Nội trong đó có 3 thành viên từ câu lạc bộ Máu Sư Phạm, 5 thành viên từ câu lạc bộ Truyền thông và 7 thành viên từ câu lạc bộ Kĩ năng. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên sao cho những người cùng câu lạc bộ thì ngồi cạnh nhau

Câu 8 :

Cho phương trình A x 3 + 2 C x + 1 x - 1 - 3 C x - 1 x - 3 = 3 x 2 + P 6 + 159 Giả sử x = x 0 là nghiệm của phương trình trên, khi đó

Câu 9 :

Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng vòng tròn 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi là

Câu 10 :

Cho khai triển 1 + x + x 2 = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n với n 2 a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Tính tổng S = a 0 + a 1 + a 2 + . . . + a 2 n biết a 3 14 = a 4 41

Câu 11 :

Cho đa giác đều A 1 A 2 ... A 2 n nội tiếp trong đường tròn tâm O. Hỏi có bao nhiêu tam giác có đỉnh là 3 trong 2N điểm A 1 ; A 2 ;...; A 2 n

Câu 12 :

Cho hai đường thẳng song song d 1 , d 2 . Trên đường thẳng d 1 lấy 10 điểm phân biệt, trên đường thẳng d 2 lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác tạo thành mà ba đỉnh của nó được chọn từ 25 điểm vừa nói ở trên?

Câu 13 :

Tìm số hạng không chứa x trong khai triển x 2 + 1 x 3 n biết n là số nguyên dương thỏa mãn C n 1 + C n 3 = 13 n

Câu 14 :

Tuấn và Hùng cùng tham gia kì thi THPTQG năm 2018, ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì Tuấn và Hùng đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn của tổ hợp KHTN là Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tìm xác xuất để Tuấn và Hùng có chung đúng một môn thi tự chọn và chung một mã đề.

Câu 15 :

Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C m 2 = 153 C m n = C m n + 2 Khi đó m+n bằng

Câu 16 :

Một hội đồng quản trị của một công ty gồm 12 người, trong đó có 5 nữ. Từ hội đồng quản trị đó người ta bầu ra 1 chủ tịch, 1 phó chủ tịch và 2 ủy viên. Hỏi có bao nhiêu cách bầu sao cho trong 4 người được bầu phải có nữ.

Câu 17 :

Tìm hệ số của x 5 trong khai triển P x = 1 + x + 2 1 + x 2 + . . . + 8 1 + x 8

Câu 18 :

Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi đá cầu. Người giành chiến thắng là người đầu tiên thắng được 5 trận cầu. Tại thời điểm người chơi thứ nhất đã thắng 4 trận cầu thì người chơi thứ hai mới thắng 2 trận cầu, tính xác suất để người chơi thứ nhất giành chiến thắng

Câu 19 :

Hệ số của số hạng chứa x 3 trong khai triển 1 x + x 3 9 (với x 0) bằng

Câu 20 :

Cho A, B là hai biến cố xung khắc. Biết P A = 1 3 , P B = 1 4 . Tính P A B .

Câu 21 :

Với k và n là hai số nguyên dương tùy ý thỏa mãn 0 k n , mệnh đề nào dưới đây đúng ?

Câu 22 :

Có hai hộp đựng bi. Hộp thứ nhất đựng 7 bi đỏ và 5 bi xanh. Hộp thứ hai đựng 6 bi đỏ và 4 bi xanh. Từ mỗi hộp lấy ngẫu nhiên một bi, tính xác suất để 2 bi được lấy ra có cùng màu.

Câu 23 :

Đặt S = C n 0 + C n 1 + C n 2 + . . . + C n k + . . . + C n n , với k, n là hai số nguyên dương tùy ý thỏa mãn k n . Mệnh đề nào dưới đây đúng ?

Câu 24 :

Số hạng không chứa x trong khai triển x 3 + 1 x 4 7 , x > 0 là số hạng thứ bao nhiêu?

Câu 25 :

Tại một cụm thi THPTQG 2018 dành cho thí sinh đăng ký thi 4 môn, trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong các môn. Lý, Hóa, Sinh, Sử, Địa. Trường X có 30 học sinh đăng ký dự thi, trong đó có 10 học sinh chọn thi môn Sử. Trong buổi đầu tiên làm thủ tục dự thi, phóng viên truyền hình đã đến chọn ngẫu nhiên 5 học sinh của trường X để phỏng vấn, xác suất để trong 5 học sinh đó có nhiều nhất 2 học sinh chọn thi môn Sử bằng

Câu 26 :

Tổng C n 0 + 1 2 C n 1 + 1 3 C n 2 + . . . + 1 n + 1 C n n bằng:

Câu 27 :

Công ty X thiết kế bảng điều khiển điện tử để mở hoặc khóa cửa một ngôi nhà. Bảng gồm 5 nút, mỗi nút được ghi một số từ 1 đến 5 và không có hai nút nào được ghi cùng một số. Để mở được cửa cần nhấn liên tiếp ít nhất 3 nút khác nhau sao cho tổng của các số trên các nút đó bằng 10. Một người không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên liên tiếp ít nhất 3 nút khác nhau trên bảng điều khiển. Xác suất P để người đó mở được cửa ngôi nhà là

Câu 28 :

Cho biết 3 số hạng đầu của khai triển x + 1 2 x n , x > 0 có các hệ số là 3 số hạng liên tiếp của một cấp số cộng. Tìm số hạng thứ 5 trong khai triển trên.

Câu 29 :

Một đoàn tàu có 3 toa chở khách đỗ ở sân ga. Biết rằng mỗi toa có ít nhất 4 chỗ trống. Có 4 vị khách từ sân ga lên tàu, họ không quen biết nhau, mỗi người chọn ngẫu nhiêu 1 toa. Tính xác suất P để 1 trong 3 toa đó có 3 trong 4 vị khách nói trên

Câu 30 :

Có 5 người nam và 3 người nữ cùng đến dự tiệc, họ không quen biết nhau, cả 8 người cùng ngồi một cách ngẫu nhiên vào xung quanh một cái bàn tròn có 8 ghế. Gọi P là xác suất không có 2 người nữ nào ngồi cạnh nhau. Mệnh đề nào dưới đây đúng?

Câu 31 :

Biết n + , n > 4 và thỏa mãn A n 0 0 ! + A n 1 1 ! + A n 2 2 ! + A n 3 3 ! + . . . + A n n n ! = 32 n - 4 Tính P = 1 n ( n + 1 )

Câu 32 :

biết n thuộc z , n lớn hơn 4 và chỉnh hợp chập hợp chập 0 của n trên 0 giai thừa, mỗi số gồm 5 chữ số khác nhau trong đó có đúng 2 chữ số lẻ và 2 chữ số lẻ đó đứng cạnh nhau.

Câu 33 :

Trong khai triển nhị thức x + 1 x n , x 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.

Câu 34 :

Xếp ngẫu nhiên 6 học sinh nam và 2 học sinh nữ thành một hàng ngang. Xác suất để 2 học sinh nữ không đứng cạnh nhau bằng

Câu 35 :

Hội đồng coi thi THPTQG tại huyện X có 30 cán bộ coi thi đến từ 3 trường THPT, trong đó có 12 giáo viên trường A, 10 giáo viên trường B, 8 giáo viên trường C. Chủ tịch hội đồng coi thi gọi ngẫu nhiên 2 cán bộ coi thi nên chứng kiến niêm phong gói đựng bì đề thi. Xác suất để 2 cán bộ coi thi được chọn là giáo viên của 2 trường THPT khác nhau bằng

Câu 36 :

Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là

Câu 37 :

Hùng và Hương cùng tham gia kì thi THPTQG 2019, ngoài thi 3 môn bắt buộc là Toán, Văn, Anh thì cả hai đều đăng kí thi thêm 2 trong 3 môn tự chọn là Lý, Hóa, Sinh để xét tuyển vào Đại học. Các môn tự chọn sẽ thi theo hình thức trắc nghiệm, mỗi môn có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau sẽ khác nhau. Tính xác suất để Hùng và Hương chỉ có chung đúng một môn tự chọn và một mã đề thi.

Câu 38 :

Công thức nào sau đây là khai triển của a + b n ?

Câu 39 :

Một hộp đựng 7 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 8 viên bi có đủ 3 màu?

Câu 40 :

Tìm hệ số của x 4 trong khai triển P x = 1 - x - 3 x 3 với n là số tự nhiên thỏa mãn hệ thức C n n - 2 + 6 n + 5 = A n + 1 2