Đề thi thử học kỳ 2 môn Toán lớp 10 online - Mã đề 09

Cài đặt đề thi
Thời gian làm bài

Vui lòng cài đặt đề thi trước khi làm bài

Câu 1

Mệnh đề nào trong các mệnh đề sau đây sai?

Câu 2

Tìm tập nghiệm $S$ của bất phương trình: $ - 4x + 16 \le 0.$

Câu 3

Bảng xét dấu sau là của biểu thức nào?

Câu 4

Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có tọa độ đỉnh $A\left( {1;2} \right),B\left( {3;1} \right),C\left( {5;4} \right)$. Phương trình nào sau đây là phương trình đường cao của tam giác $ABC$ kẻ từ $A.$

Câu 5

Tìm tập nghiệm của bất phương trình: $2\left( {x - 2} \right)\left( {x - 1} \right) \le x + 13.$

Câu 6

Tìm các giá trị của tham số $m$ để bất phương trình: $\left( {m - 3} \right){x^2} - 2mx + m - 6 < 0$ có tập nghiệm là $\mathbb{R}.$

Câu 7

Trong mặt phẳng $Oxy$, cho elip $\left( E \right):\frac{{{x^2}}}{5} + \frac{{{y^2}}}{4} = 1.$ Tỉ số giữa tiêu cự và độ dài trục lớn của elip bằng:

Câu 8

Trong mặt phẳng $Oxy$, tọa độ tâm $I$  và bán kính $R$  của đường tròn $\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25$ là:

Câu 9

Trong mặt phẳng $Oxy$, góc giữa hai đường thẳng ${d_1}:x + 2y + 4 = 0$ và ${d_2}:x - 3y + 6 = 0$  là:

Câu 10

Trong mặt phẳng $Oxy$, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng $\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y =  - 3 - t\end{array} \right.$

Câu 11

Tam giác có ba cạnh lần lượt là $3;\,\,8;\,\,9.$ Góc lớn nhất của tam giác đó có cosin bằng bao nhiêu?

Câu 12

Trong mặt phẳng $Oxy$, với giá trị nào của $m$ thì đường thẳng: ${\Delta _1}:\left( {2m - 1} \right)x + my - 10 = 0$ vuông góc với đường thẳng ${\Delta _2}:3x + 2y + 6 = 0.$

Câu 13

Người ta dùng $100m$ rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được?

Câu 14

Trong mặt phẳng $Oxy$, cho đường tròn $\left( C \right):{x^2} + {y^2} + 6x - 2y + 5 = 0$ và điểm $A\left( { - 4;2} \right).$ Đường thẳng $d$ đi qua điểm $A$  cắt $\left( C \right)$ tại hai điểm phân biệt $M,\,\,N$  sao cho $A$  là trung điểm của $MN$ có phương trình là:

Câu 15

Với số thực $a$ bất kỳ, biểu thức nào sau đây luôn dương?

Câu 16

Trong mặt phẳng $Oxy$, cho đường tròn $\left( C \right)$ có tâm $I\left( {1;3} \right)$ và đi qua điểm $M\left( {3;1} \right)$ có phương trình là:

Câu 17

Giá trị nhỏ nhất của hàm số $f\left( x \right) = \frac{x}{2} + \frac{2}{{x - 1}}$ với $x > 1$ là:

Câu 18

Trong mặt phẳng $Oxy$, khoảng cách từ điểm $M\left( {2; - 3} \right)$ đến đường thẳng $\Delta :2x + 3y - 7 = 0$  là:

Câu 19

Trong tam giác ABC có góc $\angle A = 60^\circ ;\,\,AC = 10;\,\,AB = 6.$  Khi đó, độ dài cạnh $BC$  là:

Câu 20

Biết $A,B,C$ là ba góc của tam giác $ABC,$  mệnh đề nào sau đây đúng?

Câu 21

Cho $\cos \alpha  = \frac{4}{{13}},0 < \alpha  < \frac{\pi }{2}.$ Khi đó $\sin \alpha $ bằng:

Câu 22

Tính chu vi tam giác ABC biết $AB = 6$ và $2\sin A = 3\sin B = 4\sin C$.

Câu 23

Cho $\sin \alpha  + \cos \alpha  = \frac{5}{4}.$ Khi đó $\sin 2\alpha $ có giá trị bằng:

Câu 24

Tìm tập nghiệm của bất phương trình: $\frac{{2 - x}}{{3x - 2}} \ge 1.$

Câu 25

Trong mặt phẳng $Oxy$, phương trình tổng quát của đường thẳng đi qua hai điểm $A\left( {2;1} \right)$ và $B\left( { - 1; - 3} \right)$ là:

Câu 26

Trong mặt phẳng $Oxy$, phương trình chính tắc của elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

Câu 27

Rút gọn biểu thức $P = \frac{{\cos a - \cos 5a}}{{\sin 4a + \sin 2a}}$ (với $\sin 4a + \sin 2a \ne 0$) ta được:

Câu 28

Tìm các giá trị của tham số $m$ để bất phương trình: $mx + 4 > 0$ nghiệm đúng với mọi $x$ thỏa mãn $\left| x \right| < 8.$

Câu 29

Trong mặt phẳng $Oxy$, cho elip $\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1.$ Xét các điểm $A\left( {a;b} \right)$ và $B$ thuộc elip sao cho tam giác $OAB$ cân cân tại $O$  và có diện tích đạt giá trị lớn nhất. Tính tích $ab$ biết $a;b$ là hai số dương và điểm $B$ có hoành độ dương.

Câu 30

Tìm các giá trị của tham số $m$ để phương trình: ${x^2} - 2mx - {m^2} - 3m + 4 = 0$ có hai nghiệm trái dấu.

Câu 31

Tập nghiệm của bất phương trình $ - {x^2} - 4x + 5 \ge 0$ là

Câu 32

Tập nghiệm của hệ bất phương trình $\left\{ \begin{array}{l}2x - 1 \ge 0\\4 - 3x \ge 0\end{array} \right.$ là

Câu 33

Cho $\sin \alpha  = \frac{1}{{\sqrt 3 }}$ với $0 < \alpha  < \frac{\pi }{2}.$ Tính giá trị của $\sin \left( {\alpha  + \frac{\pi }{3}} \right).$

Câu 34

Tính phương sai của dãy số liệu thống kê: $1,\,\,2,\,\,3,\,\,4,\,\,5,\,\,6,\,\,7.$

Câu 35

Tam giác  $ABC$  có $AC = 10\,cm,\,\,AB = 16\,cm{\rm{,}}\,\,\,\angle A = {60^0}.$ Độ dài cạnh $BC$  là

Câu 36

Một cửa hàng làm kệ sách và bàn làm việc. Mỗi kệ sách cần 5 giờ chế biến gỗ và 4 giờ hoàn thiện. Mỗi bàn làm việc cần 10 giờ chế biến gỗ và 3 giờ hoàn thiện. Mỗi tháng cửa hàng có không quá 600 giờ để chế biến gỗ và không quá 24 giờ để hoàn thiện. Lợi nhuận của mỗi kệ sách là 400 nghìn đồng và mỗi bàn là 750 nghìn đồng. Hỏi mỗi tháng phải làm bao nhiêu kệ sách và bàn làm việc để cửa hàng thu được lợi nhuận tối đa?

Câu 37

Trong mặt phẳng với hệ tọa độ $Oxy$, gọi $\alpha $ là góc giữa hai đường thẳng $x + 2y - \sqrt 2  = 0$ và$x - y = 0$. Tính $\cos \alpha $. 

Câu 38

Trong mặt phẳng với hệ tọa độ $Oxy$, phương trình nào dưới đây là phương trình đường tròn?

Câu 39

Cho hai số a,b thỏa mãn $\frac{{{a^2} + {b^2}}}{2} \le {\left( {\frac{{a + b}}{2}} \right)^2}$. Chọn mệnh đề đúng trong các mệnh đề sau:

Câu 40

Cho hàm số $f\left( x \right) = \frac{{x + 2019}}{{x - 2019}}$. Chọn khẳng định đúng trong các khẳng định sau :